loj124 除数函数求和 1

https://loj.ac/problem/124

$\sum_{i=1}^n(\sum_{d|i}d^k)=\sum_{i=1}^n(i^k*{\lfloor}{\frac{n}{i}}{\rfloor})$

不能直接数论分块了,但是一看数据范围,可以线性筛啊

怎么筛呢?可以把所有的$i^k$筛出来。就是质数直接算,其他的根据$(a*b)^k=a^k*b^k$在被筛掉的时候递推出来。

 #include<cstdio>
#include<algorithm>
#include<cstring>
#include<vector>
using namespace std;
#define fi first
#define se second
#define mp make_pair
#define pb push_back
typedef long long ll;
typedef unsigned long long ull;
typedef pair<int,int> pii;
#define N 10000010
#define md 1000000007
bool nprime[N+];int prime[N+],len;
ll A[N+],ans,n,k;
ll poww(ll a,ll b)
{
ll base=a,ans=;
while(b)
{
if(b&) ans=ans*base%md;
base=base*base%md;
b>>=;
}
return ans;
}
int main()
{
ll i,j;
scanf("%lld%lld",&n,&k);
A[]=;
for(i=;i<=n;i++)
{
if(!nprime[i]) prime[++len]=i,A[i]=poww(i,k);
for(j=;j<=len&&i*prime[j]<=n;j++)
{
nprime[i*prime[j]]=;
A[i*prime[j]]=A[i]*A[prime[j]]%md;
if(i%prime[j]==) break;
}
}
for(i=;i<=n;i++) ans=(ans+A[i]*(n/i)%md)%md;
printf("%lld",ans);
return ;
}

loj124 除数函数求和 1的更多相关文章

  1. LiberOJ #124. 除数函数求和 【整除分块】

    一.题目 #124. 除数函数求和 二.分析 比较好的一题,首先我们要对题目和样例进行分析,明白题目的意思. 由于对于每一个$d$,它所能整除的数其实都是定的,且数量是$ \lfloor \frac{ ...

  2. LOJ #124. 除数函数求和 1

    题目描述 $\sigma_k(n) = \sum_{d | n} d ^ k$​ 求 $\sum_{i=1}^n\sigma_k(i)$ 的值对 109 取模的结果. 输入格式 第一行两个正整数 n, ...

  3. Loj #124. 除数函数求和

    链接:https://loj.ac/problem/124 就是筛一下积性函数. #include<bits/stdc++.h> #define ll long long #define ...

  4. Loj #125. 除数函数求和(2)

    link : https://loj.ac/problem/125 分块calc即可. #include<bits/stdc++.h> #define ll long long using ...

  5. loj125 除数函数求和 2

    https://loj.ac/problem/125 $原式=2\sum_{i=1}^n(i^2*{\lfloor}{\frac{n}{i}}{\rfloor})+3\sum_{i=1}^n(i*{\ ...

  6. Java程序:从命令行接收多个数字,求和并输出结果

    一.设计思想:由于命令行接收的是字符串类型,因此应先将字符串类型转化为整型或其他字符型,然后利用for循环求和并输出结果 二.程序流程图: 三.源程序代码:   //王荣荣 2016/9/23     ...

  7. Java之递归求和的两张方法

    方法一: package com.smbea.demo; public class Student { private int sum = 0; /** * 递归求和 * @param num */ ...

  8. EXCEL中对1个单元格中多个数字求和

    如A1=3779.3759.3769.3781.3750,A2对A1中4个数字求和怎么求!请高手赐教! 方法一:在B1中输入公式=SUM(MID(A1,{1,6,11,16,21},4)*1) 方法二 ...

  9. codevs 1082 线段树区间求和

    codevs 1082 线段树练习3 链接:http://codevs.cn/problem/1082/ sumv是维护求和的线段树,addv是标记这歌节点所在区间还需要加上的值. 我的线段树写法在运 ...

随机推荐

  1. linux块设备驱动(一)——块设备概念介绍

    本文来源于: 1. http://blog.csdn.net/jianchi88/article/details/7212370 2. http://blog.chinaunix.net/uid-27 ...

  2. Python2.7安装教程

    作者:zhanhailiang 日期:2014-11-16 [root@~/software]# yum install bzip* [root@~/software]# wget http://ww ...

  3. MapReduce算法形式三:cleanup

    案例三:cleanup 其实这个案例可以不用写这么复杂,不用cleanup也能写,但是为了,突显,突显,突显(重要的事说四遍)cleanup的重要性,琢磨了半天,恩,这样写既可以突显cleanup又显 ...

  4. Linux系统(Centos)下安装Java环境配置步骤详述

    1.首先要去下载好JDK,Java SE 8的官方网址是http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2 ...

  5. mysql 发生系统错误1067

    一般是由配置文件错误语法不正确引起的,如my.ini本人在mysql mysql-5.6.29-winx64 配置过程中遇到“发生系统错误1067”主要由于下面两个目录写的格式不正确引起的正确写法如下 ...

  6. CSS自定义文件上传按钮样式,兼容主流浏览器

    解决办法:使用text文本框及a链接模拟文件上传按钮,并且把文件上传按钮放在他们上面,并且文件上传按钮显示透明.​1.图片​​2. [代码][HTML]代码 <div class="b ...

  7. 使用TextView实现跑马灯的效果

    1.定义textView标签的4个属性: android:singleLine="true"//使其只能单行 android:ellipsize="marquee&quo ...

  8. RandomUtils

    package com.cc.hkjc.util; import java.util.Random; public class RandomUtils {    /**     * 获取count个随 ...

  9. CQOI2013 新数独

    传送门 这道题也是很暴力的搜索啊…… 因为数独一开始全是空的,只有许许多多的大小限制条件,那也没必要纠结从哪开始搜索了,直接暴力搜索之后判断一下是否合法. 这题最恶心的是读入.现学了一招判断点在哪个块 ...

  10. 【前端】Element-UI 省市县级联选择器 JSON数据

    转载请注明出处:http://www.cnblogs.com/shamoyuu/p/element_cascader.html 不想自己处理的就直接下载吧 http://shamoyuu.bj.bce ...