E -- Expected value of the expression
DESCRIPTION

You are given an expression: A0O1A1O2A2⋯OnAnA0O1A1O2A2⋯OnAn, where Ai(0≤i≤n)Ai(0≤i≤n) represents number, Oi(1≤i≤n)Oi(1≤i≤n) represents operator. There are three operators, &,|,^&,|,^, which means and,or,xorand,or,xor, and they have the same priority.

The ii-th operator OiOi and the numbers AiAi disappear with the probability of pipi.

Find the expected value of an expression.

INPUT
The first line contains only one integer n(1≤n≤1000)n(1≤n≤1000). The second line contains n+1n+1 integers Ai(0≤Ai<220)Ai(0≤Ai<220). The third line contains nn chars OiOi. The fourth line contains nn floats pi(0≤pi≤1)pi(0≤pi≤1).
OUTPUT
Output the excepted value of the expression, round to 6 decimal places.
SAMPLE INPUT
2
1 2 3
^ &
0.1 0.2
SAMPLE OUTPUT
2.800000
HINT
Probability = 0.1 * 0.2 Value = 1 Probability = 0.1 * 0.8 Value = 1 & 3 = 1 Probability = 0.9 * 0.2 Value = 1 ^ 2 = 3 Probability = 0.9 * 0.8 Value = 1 ^ 2 & 3 = 3 Expected Value = 0.1 * 0.2 * 1 + 0.1 * 0.8 * 1 + 0.9 * 0.2 * 3 + 0.9 * 0.8 * 3 = 2.80000
 
 
题意:
  给你一个n+1个数进行位操作
  给你这个n+1个数(a0~an)和 进行的操作(异或,并,或) c[i]
  ci 和 ai同时消失的 概率是 pi
  求最后值得期望
题解:
  dp[i][25][0/1]
  表示前i个 数  0~21位上每一位存在(0/1)的概率,强推过去就行了
#include<bits/stdc++.h>
using namespace std;
#pragma comment(linker, "/STACK:102400000,102400000")
#define ls i<<1
#define rs ls | 1
#define mid ((ll+rr)>>1)
#define pii pair<int,int>
#define MP make_pair
typedef long long LL;
const long long INF = 1e18+1LL;
const double pi = acos(-1.0);
const int N = 5e3+, M = 1e3+,inf = 2e9; int n,a[N];
char c[N];
double dp[N][][],p[N];
int main() {
while(scanf("%d",&n)!=EOF) {
for(int i = ; i <= n; ++i) {
scanf("%d",&a[i]);
}
memset(dp,,sizeof(dp));
for(int i = ; i <= n; ++i) {
getchar();
scanf("%c",&c[i]);
}
for(int i = ; i <= n; ++i) {
scanf("%lf",&p[i]);
}
for(int i = ; i <= ; ++i) {
if(((<<i)&a[])) dp[][i][] = ,dp[][i][] = ;
else dp[][i][] = ,dp[][i][] = ;
}
for(int i = ; i <= n; ++i) { for(int j = ; j <= ; ++j) {
dp[i][j][] += 1.0*dp[i-][j][] * p[i];
dp[i][j][] += 1.0*dp[i-][j][] * p[i];
}
for(int j = ; j <= ; ++j) {
int tmp = ((a[i]>>j)&);
if(c[i] == '^') {
dp[i][j][tmp^] += 1.0*dp[i-][j][]*(1.0-p[i]);
dp[i][j][tmp^] += 1.0*dp[i-][j][]*(1.0-p[i]);
}
else if(c[i] == '&'){
dp[i][j][tmp&] += 1.0*dp[i-][j][]*(1.0-p[i]);
dp[i][j][tmp&] += 1.0*dp[i-][j][]*(1.0-p[i]);
}
else if(c[i] == '|') {
dp[i][j][tmp|] += 1.0*dp[i-][j][]*(1.0-p[i]);
dp[i][j][tmp|] += 1.0*dp[i-][j][]*(1.0-p[i]);
}
}
}
double ans = ;
for(int i = ; i <= ; ++i) {
LL tmp = <<i;
ans += (double)(dp[n][i][]) * 1.0 * tmp;
}
printf("%.6f\n",ans);
}
return ;
}

lonlifeOJ1152 “玲珑杯”ACM比赛 Round #19 概率DP的更多相关文章

  1. “玲珑杯”ACM比赛 Round #19题解&源码【A,规律,B,二分,C,牛顿迭代法,D,平衡树,E,概率dp】

    A -- simple math problem Time Limit:2s Memory Limit:128MByte Submissions:1599Solved:270 SAMPLE INPUT ...

  2. “玲珑杯”ACM比赛 Round #19 B -- Buildings (RMQ + 二分)

    “玲珑杯”ACM比赛 Round #19 Start Time:2017-07-29 14:00:00 End Time:2017-07-29 16:30:00 Refresh Time:2017-0 ...

  3. 玲珑杯”ACM比赛 Round #19 B 维护单调栈

    1149 - Buildings Time Limit:2s Memory Limit:128MByte Submissions:588Solved:151 DESCRIPTION There are ...

  4. “玲珑杯”ACM比赛 Round #19

    A -- A simple math problem Time Limit:2s Memory Limit:128MByte Submissions:1599Solved:270 DESCRIPTIO ...

  5. “玲珑杯”ACM比赛 Round #12题解&源码

    我能说我比较傻么!就只能做一道签到题,没办法,我就先写下A题的题解&源码吧,日后补上剩余题的题解&源码吧!                                     A ...

  6. “玲珑杯”ACM比赛 Round #1

    Start Time:2016-08-20 13:00:00 End Time:2016-08-20 18:00:00 Refresh Time:2017-11-12 19:51:52 Public ...

  7. “玲珑杯”ACM比赛 Round #18

    “玲珑杯”ACM比赛 Round #18 Start Time:2017-07-15 12:00:00 End Time:2017-07-15 15:46:00 A -- 计算几何你瞎暴力 Time ...

  8. “玲珑杯”ACM比赛 Round #4 E -- array DP

    http://www.ifrog.cc/acm/problem/1050?contest=1006&no=4 DP[val]表示以val这个值结尾的等差数列有多少个 DP[val] += DP ...

  9. “玲珑杯”ACM比赛 Round #18 C -- 图论你先敲完模板(和题目一点关系都没有,dp)

    题目链接:http://www.ifrog.cc/acm/problem/1146?contest=1020&no=2 题解:显然知道这是一道dp而且 dp[i]=min(dp[j]+2^(x ...

随机推荐

  1. 牛客网Wannafly模拟赛

    A矩阵 时间限制:1秒 空间限制:131072K 题目描述 给出一个n * m的矩阵.让你从中发现一个最大的正方形.使得这样子的正方形在矩阵中出现了至少两次.输出最大正方形的边长. 输入描述: 第一行 ...

  2. asp.net提交危险字符处理方法之一

    在form表单提交前,可以在web页面,submit按钮的click事件中,使用js函数对,可能有危险字符的内容进行编码. 有3个函数可用: encodeURI() 函数可把字符串作为 URI 进行编 ...

  3. ecmascript6入门

    ECMAScript 6 入门  阮一峰

  4. 九度oj 题目1109:连通图

    题目描述: 给定一个无向图和其中的所有边,判断这个图是否所有顶点都是连通的. 输入: 每组数据的第一行是两个整数 n 和 m(0<=n<=1000).n 表示图的顶点数目,m 表示图中边的 ...

  5. Java面向对象三大特征

    封装: 首先,属性可用来描述同一类事物的特征, 行为可描述一类事物可做的操作,封装就是要把属于同一类事物的共性(包括属性与行为)归到一个类中,以方便使用.比如人这个东东,可用下面的方式封装:人{ 年龄 ...

  6. spring之Annotation

    spring除了提供了@Autowired,还提供了以下几类annotation. 1.@Component, @Repository, @Service, @Controller @Reposito ...

  7. CentOS7下安装Docker-Compose No module named 'requests.packages.urllib3'

    在使用Docker的时候,有一个工具叫做  docker-compose,安装它的前提是要安装pip工具. 1.首先检查Linux有没有安装Python-pip包,直接执行 yum install p ...

  8. P1582 倒水 (二进制)

    题目描述 一天,CC买了N个容量可以认为是无限大的瓶子,开始时每个瓶子里有1升水.接着~~CC发现瓶子实在太多了,于是他决定保留不超过K个瓶子.每次他选择两个当前含水量相同的瓶子,把一个瓶子的水全部倒 ...

  9. 标准C程序设计七---06

    Linux应用             编程深入            语言编程 标准C程序设计七---经典C11程序设计    以下内容为阅读:    <标准C程序设计>(第7版) 作者 ...

  10. android的网络访问URL

    Thread visitBaiduThread = new Thread(new VisitWebRunnable());     visitBaiduThread.start();     try ...