In this example:

protocol MyProtocol {

func testFuncA()

}

extension MyProtocol {

func testFuncA() {

print("MyProtocol's testFuncA")

}

}

class MyClass : MyProtocol {}

let object: MyClass = MyClass()

object.testFuncA()

static dispatch is used. The concrete type of object is known at compile time; it's MyClass. Swift can then see that it conforms to MyProtocol without providing its own implementation of testFuncA(), so it can dispatch straight to the extension method.

So to answer your individual questions:

MyClassMyClassNo – a Swift class v-table only holds methods defined in the body of the class declaration. That is to say:

protocol MyProtocol {

func testFuncA()

}

extension MyProtocol {

// No entry in MyClass' Swift v-table.

// (but an entry in MyClass' protocol witness table for conformance to MyProtocol)

func testFuncA() {

print("MyProtocol's testFuncA")

}

}

class MyClass : MyProtocol {

// An entry in MyClass' Swift v-table.

func foo() {}

}

extension MyClass {

// No entry in MyClass' Swift v-table (this is why you can't override

// extension methods without using Obj-C message dispatch).

func bar() {}

}

There are no existential containers in the code:

let object: MyClass = MyClass()

object.testFuncA()

Existential containers are used for protocol-typed instances, such as your first example:

let object: MyProtocol = MyClass()

object.testFuncA()

The MyClass instance is boxed in an existential container with a protocol witness table that maps calls to testFuncA() to the extension method (now we're dealing with dynamic dispatch).

A nice way to see all of the above in action is by taking a look at the SIL generated by the compiler; which is a fairly high-level intermediate representation of the generated code (but low-level enough to see what kind of dispatch mechanisms are in play).

You can do so by running the following (note it's best to first remove print statements from your program, as they inflate the size of the SIL generated considerably):

swiftc -emit-sil main.swift | xcrun swift-demangle > main.silgen

Let's take a look at the SIL for the first example in this answer. Here's the main function, which is the entry-point of the program:

// main

sil @main : $@convention(c) (Int32, UnsafeMutablePointer<Optional<UnsafeMutablePointer<Int8>>>) -> Int32 {

bb0(%0 : $Int32, %1 : $UnsafeMutablePointer<Optional<UnsafeMutablePointer<Int8>>>):

alloc_global @main.object : main.MyClass       // id: %2

%3 = global_addr @main.object : main.MyClass : $*MyClass // users: %9, %7

// function_ref MyClass.__allocating_init()

%4 = function_ref @main.MyClass.__allocating_init() -> main.MyClass : $@convention(method) (@thick MyClass.Type) -> @owned MyClass // user: %6

%5 = metatype $@thick MyClass.Type              // user: %6

%6 = apply %4(%5) : $@convention(method) (@thick MyClass.Type) -> @owned MyClass // user: %7

store %6 to %3 : $*MyClass                      // id: %7

// Get a reference to the extension method and call it (static dispatch).

// function_ref MyProtocol.testFuncA()

%8 = function_ref @(extension in main):main.MyProtocol.testFuncA() -> () : $@convention(method) <τ_0_0 where τ_0_0 : MyProtocol> (@in_guaranteed τ_0_0) -> () // user: %12

%9 = load %3 : $*MyClass                        // user: %11

%10 = alloc_stack $MyClass                      // users: %11, %13, %12

store %9 to %10 : $*MyClass                     // id: %11

%12 = apply %8<MyClass>(%10) : $@convention(method) <τ_0_0 where τ_0_0 : MyProtocol> (@in_guaranteed τ_0_0) -> ()

dealloc_stack %10 : $*MyClass                   // id: %13

%14 = integer_literal $Builtin.Int32, 0         // user: %15

%15 = struct $Int32 (%14 : $Builtin.Int32)      // user: %16

return %15 : $Int32                             // id: %16

} // end sil function 'main'

The bit that we're interested in here is this line:

%8 = function_ref @(extension in main):main.MyProtocol.testFuncA() -> () : $@convention(method) <τ_0_0 where τ_0_0 : MyProtocol> (@in_guaranteed τ_0_0) -> () // user: %12

The function_ref instruction gets a reference to a function known at compile-time. You can see that it's getting a reference to the function @(extension in main):main.MyProtocol.testFuncA() -> (), which is the method in the protocol extension. Thus Swift is using static dispatch.

Let's now take a look at what happens when we make the call like this:

let object: MyProtocol = MyClass()

object.testFuncA()

The main function now looks like this:

// main

sil @main : $@convention(c) (Int32, UnsafeMutablePointer<Optional<UnsafeMutablePointer<Int8>>>) -> Int32 {

bb0(%0 : $Int32, %1 : $UnsafeMutablePointer<Optional<UnsafeMutablePointer<Int8>>>):

alloc_global @main.object : main.MyProtocol  // id: %2

%3 = global_addr @main.object : main.MyProtocol : $*MyProtocol // users: %9, %4

// Create an opaque existential container and get its address (%4).

%4 = init_existential_addr %3 : $*MyProtocol, $MyClass // user: %8

// function_ref MyClass.__allocating_init()

%5 = function_ref @main.MyClass.__allocating_init() -> main.MyClass : $@convention(method) (@thick MyClass.Type) -> @owned MyClass // user: %7

%6 = metatype $@thick MyClass.Type              // user: %7

%7 = apply %5(%6) : $@convention(method) (@thick MyClass.Type) -> @owned MyClass // user: %8

// Store the MyClass instance in the existential container.

store %7 to %4 : $*MyClass                      // id: %8

// Open the existential container to get a pointer to the MyClass instance.

%9 = open_existential_addr immutable_access %3 : $*MyProtocol to $*@opened("F199B87A-06BA-11E8-A29C-DCA9047B1400") MyProtocol // users: %11, %11, %10

// Dynamically lookup the function to call for the testFuncA requirement.

%10 = witness_method $@opened("F199B87A-06BA-11E8-A29C-DCA9047B1400") MyProtocol, #MyProtocol.testFuncA!1 : <Self where Self : MyProtocol> (Self) -> () -> (), %9 : $*@opened("F199B87A-06BA-11E8-A29C-DCA9047B1400") MyProtocol : $@convention(witness_method) <τ_0_0 where τ_0_0 : MyProtocol> (@in_guaranteed τ_0_0) -> () // type-defs: %9; user: %11

// Call the function we looked-up for the testFuncA requirement.

%11 = apply %10<@opened("F199B87A-06BA-11E8-A29C-DCA9047B1400") MyProtocol>(%9) : $@convention(witness_method) <τ_0_0 where τ_0_0 : MyProtocol> (@in_guaranteed τ_0_0) -> () // type-defs: %9

%12 = integer_literal $Builtin.Int32, 0         // user: %13

%13 = struct $Int32 (%12 : $Builtin.Int32)      // user: %14

return %13 : $Int32                             // id: %14

} // end sil function 'main'

There are some key differences here.

An (opaque) existential container is created with init_existential_addr, and the MyClass instance is stored into it (store %7 to %4).

The existential container is then opened with open_existential_addr, which gets a pointer to the instance stored (the MyClass instance).

Then, witness_method is used in order to lookup the function to call for the protocol requirement MyProtocol.testFuncA for the MyClass instance. This will check the protocol witness table for MyClass's conformance, which is listed at the bottom of the generated SIL:

sil_witness_table hidden MyClass: MyProtocol module main {

method #MyProtocol.testFuncA!1: <Self where Self : MyProtocol> (Self) -> () -> () : @protocol witness for main.MyProtocol.testFuncA() -> () in conformance main.MyClass : main.MyProtocol in main // protocol witness for MyProtocol.testFuncA() in conformance MyClass

}

This lists the function @protocol witness for main.MyProtocol.testFuncA() -> (). We can check the implementation of this function:

// protocol witness for MyProtocol.testFuncA() in conformance MyClass

sil private [transparent] [thunk] @protocol witness for main.MyProtocol.testFuncA() -> () in conformance main.MyClass : main.MyProtocol in main : $@convention(witness_method) (@in_guaranteed MyClass) -> () {

// %0                                             // user: %2

bb0(%0 : $*MyClass):

%1 = alloc_stack $MyClass                       // users: %7, %6, %4, %2

copy_addr %0 to [initialization] %1 : $*MyClass // id: %2

// Get a reference to the extension method and call it.

// function_ref MyProtocol.testFuncA()

%3 = function_ref @(extension in main):main.MyProtocol.testFuncA() -> () : $@convention(method) <τ_0_0 where τ_0_0 : MyProtocol> (@in_guaranteed τ_0_0) -> () // user: %4

%4 = apply %3<MyClass>(%1) : $@convention(method) <τ_0_0 where τ_0_0 : MyProtocol> (@in_guaranteed τ_0_0) -> ()

%5 = tuple ()                                   // user: %8

destroy_addr %1 : $*MyClass                     // id: %6

dealloc_stack %1 : $*MyClass                    // id: %7

return %5 : $()                                 // id: %8

} // end sil function 'protocol witness for main.MyProtocol.testFuncA() -> () in conformance main.MyClass : main.MyProtocol in main'

and sure enough, its getting a function_ref to the extension method, and calling that function.

The looked-up witness function is then called after the witness_method lookup with the line:

%11 = apply %10<@opened("F199B87A-06BA-11E8-A29C-DCA9047B1400") MyProtocol>(%9) : $@convention(witness_method) <τ_0_0 where τ_0_0 : MyProtocol> (@in_guaranteed τ_0_0) -> () // type-defs: %9

So, we can conclude that dynamic protocol dispatch is used here, based on the use of witness_method.

We just breezed though quite a lot of technical details here; feel free to work through the SIL line-by-line, using the documentation to find out what each instruction does. I'm happy to clarify anything you may be unsure about.

https://stackoverflow.com/questions/48422621/which-dispatch-method-would-be-used-in-swift

Which dispatch method would be used in Swift?的更多相关文章

  1. Which dispatch method would be used in Swift?-Existential Container

    In this example: protocol MyProtocol { func testFuncA() } extension MyProtocol { func testFuncA() { ...

  2. 【基本功】深入剖析Swift性能优化

    简介 2014年,苹果公司在WWDC上发布Swift这一新的编程语言.经过几年的发展,Swift已经成为iOS开发语言的“中流砥柱”,Swift提供了非常灵活的高级别特性,例如协议.闭包.泛型等,并且 ...

  3. 深入剖析Swift性能优化

    简介 2014年,苹果公司在WWDC上发布Swift这一新的编程语言.经过几年的发展,Swift已经成为iOS开发语言的“中流砥柱”,Swift提供了非常灵活的高级别特性,例如协议.闭包.泛型等,并且 ...

  4. [转] How to dispatch a Redux action with a timeout?

    How to dispatch a Redux action with a timeout? Q I have an action that updates notification state of ...

  5. Using Swift with Cocoa and Objective-C(Swift 2.0版):开始--基础设置-备

    这是一个正在研发的API或技术的概要文件,苹果公司提供这些信息主要是为了帮助你通过苹果产品使用这些技术或者编程接口而做好计划,该信息有可能会在未来发生改变,本文当中提到的软件应该以最终发布的操作系统测 ...

  6. Unused Method(不再使用的方法)——Dead Code(死亡代码)

        系列文章目录:     使用Fortify进行代码静态分析(系列文章) Unused Method(不再使用的方法)    示例:  private bool checkLevel(strin ...

  7. [React] Use the useReducer Hook and Dispatch Actions to Update State (useReducer, useMemo, useEffect)

    As an alternate to useState, you could also use the useReducer hook that provides state and a dispat ...

  8. PHP 5.6 编译安装选项说明

    `configure' configures this package to adapt to many kinds of systems. Usage: ./configure [OPTION].. ...

  9. JSP实现word文档的上传,在线预览,下载

    前两天帮同学实现在线预览word文档中的内容,而且需要提供可以下载的链接!在网上找了好久,都没有什么可行的方法,只得用最笨的方法来实现了.希望得到各位大神的指教.下面我就具体谈谈自己的实现过程,总结一 ...

随机推荐

  1. 从远程Linux Copy文件到本机 界面化操作

    1.安装SSHSecureShellClient 2.打开 3.设置1,然后打开2就可以操作了

  2. 省市区三级-javabean和mybatis

    bean: package com.baiwang.moirai.model.sys; import com.fasterxml.jackson.annotation.JsonInclude; /** ...

  3. 【idea】idea快捷键

    Alt+回车 导入包,自动修正 alt+shift+↑  向上sout输出 psvm主函数 fori for Ctrl+N   查找类Ctrl+Shift+N 查找文件Ctrl+Alt+L  格式化代 ...

  4. Recovery启动流程(1)--- 应用层到开机进入recovery详解

    转载请注明来源:cuixiaolei的技术博客 进入recovery有两种方式,一种是通过组合键进入recovery,另一种是上层应用设置中执行安装/重置/清除缓存等操作进行recovery.这篇文档 ...

  5. Atom vim mode

    /******************************************************************** * Atom vim mode * 说明: * 想找一个具有 ...

  6. 并不对劲的bzoj1500: [NOI2005]维修数列

    传送门-> 这题没什么好说的……小清新数据结构题……并不对劲的人太菜了,之前照着标程逐行比对才过了这道题,前几天刚刚把这题一遍写对…… 其实这题应该口胡很容易.操作1,2,3,4,5就是普通的s ...

  7. CodeForces 723C Polycarp at the Radio (题意题+暴力)

    题意:给定 n 个数,让把某一些变成 1-m之间的数,要改变最少,使得1-m中每个数中出现次数最少的尽量大. 析:这个题差不多读了一个小时吧,实在看不懂什么意思,其实并不难,直接暴力就好,n m不大. ...

  8. Gym 100512G Grand Tour (拓扑排序)

    题意:一个团队要去参观一些学校,某些学校要在某些学校之前先参观,并且每个学校有一个权值,团队去的时间与权值的差作为难过度(最小是0), 所有的难过度的最大值是伤心度,让你安排参观顺序,使得这个伤心度最 ...

  9. Objective-C NSString/NSMutableString

    创建于完成: 2018/02/05 总览: http://www.cnblogs.com/lancgg/p/8404975.html  字符串类  简介  字符码: Unicode  NSString ...

  10. CF896C Willem, Chtholly and Seniorious(珂朵莉树)

    中文题面 珂朵莉树的板子……这篇文章很不错 据说还有奈芙莲树和瑟尼欧里斯树…… 等联赛考完去学一下(逃 //minamoto #include<bits/stdc++.h> #define ...