In this example:

protocol MyProtocol {

func testFuncA()

}

extension MyProtocol {

func testFuncA() {

print("MyProtocol's testFuncA")

}

}

class MyClass : MyProtocol {}

let object: MyClass = MyClass()

object.testFuncA()

static dispatch is used. The concrete type of object is known at compile time; it's MyClass. Swift can then see that it conforms to MyProtocol without providing its own implementation of testFuncA(), so it can dispatch straight to the extension method.

So to answer your individual questions:

MyClassMyClassNo – a Swift class v-table only holds methods defined in the body of the class declaration. That is to say:

protocol MyProtocol {

func testFuncA()

}

extension MyProtocol {

// No entry in MyClass' Swift v-table.

// (but an entry in MyClass' protocol witness table for conformance to MyProtocol)

func testFuncA() {

print("MyProtocol's testFuncA")

}

}

class MyClass : MyProtocol {

// An entry in MyClass' Swift v-table.

func foo() {}

}

extension MyClass {

// No entry in MyClass' Swift v-table (this is why you can't override

// extension methods without using Obj-C message dispatch).

func bar() {}

}

There are no existential containers in the code:

let object: MyClass = MyClass()

object.testFuncA()

Existential containers are used for protocol-typed instances, such as your first example:

let object: MyProtocol = MyClass()

object.testFuncA()

The MyClass instance is boxed in an existential container with a protocol witness table that maps calls to testFuncA() to the extension method (now we're dealing with dynamic dispatch).

A nice way to see all of the above in action is by taking a look at the SIL generated by the compiler; which is a fairly high-level intermediate representation of the generated code (but low-level enough to see what kind of dispatch mechanisms are in play).

You can do so by running the following (note it's best to first remove print statements from your program, as they inflate the size of the SIL generated considerably):

swiftc -emit-sil main.swift | xcrun swift-demangle > main.silgen

Let's take a look at the SIL for the first example in this answer. Here's the main function, which is the entry-point of the program:

// main

sil @main : $@convention(c) (Int32, UnsafeMutablePointer<Optional<UnsafeMutablePointer<Int8>>>) -> Int32 {

bb0(%0 : $Int32, %1 : $UnsafeMutablePointer<Optional<UnsafeMutablePointer<Int8>>>):

alloc_global @main.object : main.MyClass       // id: %2

%3 = global_addr @main.object : main.MyClass : $*MyClass // users: %9, %7

// function_ref MyClass.__allocating_init()

%4 = function_ref @main.MyClass.__allocating_init() -> main.MyClass : $@convention(method) (@thick MyClass.Type) -> @owned MyClass // user: %6

%5 = metatype $@thick MyClass.Type              // user: %6

%6 = apply %4(%5) : $@convention(method) (@thick MyClass.Type) -> @owned MyClass // user: %7

store %6 to %3 : $*MyClass                      // id: %7

// Get a reference to the extension method and call it (static dispatch).

// function_ref MyProtocol.testFuncA()

%8 = function_ref @(extension in main):main.MyProtocol.testFuncA() -> () : $@convention(method) <τ_0_0 where τ_0_0 : MyProtocol> (@in_guaranteed τ_0_0) -> () // user: %12

%9 = load %3 : $*MyClass                        // user: %11

%10 = alloc_stack $MyClass                      // users: %11, %13, %12

store %9 to %10 : $*MyClass                     // id: %11

%12 = apply %8<MyClass>(%10) : $@convention(method) <τ_0_0 where τ_0_0 : MyProtocol> (@in_guaranteed τ_0_0) -> ()

dealloc_stack %10 : $*MyClass                   // id: %13

%14 = integer_literal $Builtin.Int32, 0         // user: %15

%15 = struct $Int32 (%14 : $Builtin.Int32)      // user: %16

return %15 : $Int32                             // id: %16

} // end sil function 'main'

The bit that we're interested in here is this line:

%8 = function_ref @(extension in main):main.MyProtocol.testFuncA() -> () : $@convention(method) <τ_0_0 where τ_0_0 : MyProtocol> (@in_guaranteed τ_0_0) -> () // user: %12

The function_ref instruction gets a reference to a function known at compile-time. You can see that it's getting a reference to the function @(extension in main):main.MyProtocol.testFuncA() -> (), which is the method in the protocol extension. Thus Swift is using static dispatch.

Let's now take a look at what happens when we make the call like this:

let object: MyProtocol = MyClass()

object.testFuncA()

The main function now looks like this:

// main

sil @main : $@convention(c) (Int32, UnsafeMutablePointer<Optional<UnsafeMutablePointer<Int8>>>) -> Int32 {

bb0(%0 : $Int32, %1 : $UnsafeMutablePointer<Optional<UnsafeMutablePointer<Int8>>>):

alloc_global @main.object : main.MyProtocol  // id: %2

%3 = global_addr @main.object : main.MyProtocol : $*MyProtocol // users: %9, %4

// Create an opaque existential container and get its address (%4).

%4 = init_existential_addr %3 : $*MyProtocol, $MyClass // user: %8

// function_ref MyClass.__allocating_init()

%5 = function_ref @main.MyClass.__allocating_init() -> main.MyClass : $@convention(method) (@thick MyClass.Type) -> @owned MyClass // user: %7

%6 = metatype $@thick MyClass.Type              // user: %7

%7 = apply %5(%6) : $@convention(method) (@thick MyClass.Type) -> @owned MyClass // user: %8

// Store the MyClass instance in the existential container.

store %7 to %4 : $*MyClass                      // id: %8

// Open the existential container to get a pointer to the MyClass instance.

%9 = open_existential_addr immutable_access %3 : $*MyProtocol to $*@opened("F199B87A-06BA-11E8-A29C-DCA9047B1400") MyProtocol // users: %11, %11, %10

// Dynamically lookup the function to call for the testFuncA requirement.

%10 = witness_method $@opened("F199B87A-06BA-11E8-A29C-DCA9047B1400") MyProtocol, #MyProtocol.testFuncA!1 : <Self where Self : MyProtocol> (Self) -> () -> (), %9 : $*@opened("F199B87A-06BA-11E8-A29C-DCA9047B1400") MyProtocol : $@convention(witness_method) <τ_0_0 where τ_0_0 : MyProtocol> (@in_guaranteed τ_0_0) -> () // type-defs: %9; user: %11

// Call the function we looked-up for the testFuncA requirement.

%11 = apply %10<@opened("F199B87A-06BA-11E8-A29C-DCA9047B1400") MyProtocol>(%9) : $@convention(witness_method) <τ_0_0 where τ_0_0 : MyProtocol> (@in_guaranteed τ_0_0) -> () // type-defs: %9

%12 = integer_literal $Builtin.Int32, 0         // user: %13

%13 = struct $Int32 (%12 : $Builtin.Int32)      // user: %14

return %13 : $Int32                             // id: %14

} // end sil function 'main'

There are some key differences here.

An (opaque) existential container is created with init_existential_addr, and the MyClass instance is stored into it (store %7 to %4).

The existential container is then opened with open_existential_addr, which gets a pointer to the instance stored (the MyClass instance).

Then, witness_method is used in order to lookup the function to call for the protocol requirement MyProtocol.testFuncA for the MyClass instance. This will check the protocol witness table for MyClass's conformance, which is listed at the bottom of the generated SIL:

sil_witness_table hidden MyClass: MyProtocol module main {

method #MyProtocol.testFuncA!1: <Self where Self : MyProtocol> (Self) -> () -> () : @protocol witness for main.MyProtocol.testFuncA() -> () in conformance main.MyClass : main.MyProtocol in main // protocol witness for MyProtocol.testFuncA() in conformance MyClass

}

This lists the function @protocol witness for main.MyProtocol.testFuncA() -> (). We can check the implementation of this function:

// protocol witness for MyProtocol.testFuncA() in conformance MyClass

sil private [transparent] [thunk] @protocol witness for main.MyProtocol.testFuncA() -> () in conformance main.MyClass : main.MyProtocol in main : $@convention(witness_method) (@in_guaranteed MyClass) -> () {

// %0                                             // user: %2

bb0(%0 : $*MyClass):

%1 = alloc_stack $MyClass                       // users: %7, %6, %4, %2

copy_addr %0 to [initialization] %1 : $*MyClass // id: %2

// Get a reference to the extension method and call it.

// function_ref MyProtocol.testFuncA()

%3 = function_ref @(extension in main):main.MyProtocol.testFuncA() -> () : $@convention(method) <τ_0_0 where τ_0_0 : MyProtocol> (@in_guaranteed τ_0_0) -> () // user: %4

%4 = apply %3<MyClass>(%1) : $@convention(method) <τ_0_0 where τ_0_0 : MyProtocol> (@in_guaranteed τ_0_0) -> ()

%5 = tuple ()                                   // user: %8

destroy_addr %1 : $*MyClass                     // id: %6

dealloc_stack %1 : $*MyClass                    // id: %7

return %5 : $()                                 // id: %8

} // end sil function 'protocol witness for main.MyProtocol.testFuncA() -> () in conformance main.MyClass : main.MyProtocol in main'

and sure enough, its getting a function_ref to the extension method, and calling that function.

The looked-up witness function is then called after the witness_method lookup with the line:

%11 = apply %10<@opened("F199B87A-06BA-11E8-A29C-DCA9047B1400") MyProtocol>(%9) : $@convention(witness_method) <τ_0_0 where τ_0_0 : MyProtocol> (@in_guaranteed τ_0_0) -> () // type-defs: %9

So, we can conclude that dynamic protocol dispatch is used here, based on the use of witness_method.

We just breezed though quite a lot of technical details here; feel free to work through the SIL line-by-line, using the documentation to find out what each instruction does. I'm happy to clarify anything you may be unsure about.

https://stackoverflow.com/questions/48422621/which-dispatch-method-would-be-used-in-swift

Which dispatch method would be used in Swift?的更多相关文章

  1. Which dispatch method would be used in Swift?-Existential Container

    In this example: protocol MyProtocol { func testFuncA() } extension MyProtocol { func testFuncA() { ...

  2. 【基本功】深入剖析Swift性能优化

    简介 2014年,苹果公司在WWDC上发布Swift这一新的编程语言.经过几年的发展,Swift已经成为iOS开发语言的“中流砥柱”,Swift提供了非常灵活的高级别特性,例如协议.闭包.泛型等,并且 ...

  3. 深入剖析Swift性能优化

    简介 2014年,苹果公司在WWDC上发布Swift这一新的编程语言.经过几年的发展,Swift已经成为iOS开发语言的“中流砥柱”,Swift提供了非常灵活的高级别特性,例如协议.闭包.泛型等,并且 ...

  4. [转] How to dispatch a Redux action with a timeout?

    How to dispatch a Redux action with a timeout? Q I have an action that updates notification state of ...

  5. Using Swift with Cocoa and Objective-C(Swift 2.0版):开始--基础设置-备

    这是一个正在研发的API或技术的概要文件,苹果公司提供这些信息主要是为了帮助你通过苹果产品使用这些技术或者编程接口而做好计划,该信息有可能会在未来发生改变,本文当中提到的软件应该以最终发布的操作系统测 ...

  6. Unused Method(不再使用的方法)——Dead Code(死亡代码)

        系列文章目录:     使用Fortify进行代码静态分析(系列文章) Unused Method(不再使用的方法)    示例:  private bool checkLevel(strin ...

  7. [React] Use the useReducer Hook and Dispatch Actions to Update State (useReducer, useMemo, useEffect)

    As an alternate to useState, you could also use the useReducer hook that provides state and a dispat ...

  8. PHP 5.6 编译安装选项说明

    `configure' configures this package to adapt to many kinds of systems. Usage: ./configure [OPTION].. ...

  9. JSP实现word文档的上传,在线预览,下载

    前两天帮同学实现在线预览word文档中的内容,而且需要提供可以下载的链接!在网上找了好久,都没有什么可行的方法,只得用最笨的方法来实现了.希望得到各位大神的指教.下面我就具体谈谈自己的实现过程,总结一 ...

随机推荐

  1. Buildroot构建指南——根文件系统(Rootfs)【转】

    本文转载自; 版权声明:本文为博主原创文章,未经博主允许不得转载.   目录(?)[+]   Buildroot构建指南——根文件系统(Rootfs) Buildroot的Rootfs构建流程有一个大 ...

  2. shell网络管理

    背景知识 联网就是通过网络将主机进行互联并采用不同的规范配置网络上的节点.我们以 TCP/IP 作为网络栈,所有的操作都是基于它进行的.网络是计算机系统中重要的部分.连接在网络上的每个节点都分配了一个 ...

  3. 谈一谈以太坊虚拟机EVM的缺陷与不足

    首先,EVM的设计初衷是什么?它为什么被设计成目前我们看的样子呢?根据以太坊官方提供的设计原理说明,EVM的设计目标主要针对以下方面: 简单性(Simplicity) 确定性(Determinism) ...

  4. Watir: Get document detail information in Watir.

    ie.#{element}(:id,"foo").document.currentstyle.attributeAsCamelCase so ie.#{element}(:id,& ...

  5. bzoj2002 [Hnoi2010]Bounce 弹飞绵羊——分块

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2002 第一次用分块,感觉超方便啊: 如果记录每个点的弹力系数,那么是O(1)修改O(n)查询 ...

  6. Ajax跨域访问等问题

    前端时间公司接口整顿,所有接口放一起了,然后我就写了一大堆API接口....... 今天用上了,公用人员库,前台通过ajax访问, 先是以‘json’作为数据格式进行访问,直接response fie ...

  7. asp.net mvc4 新特性

    摘自:ASP.MVC Web编程 几种模板的解释

  8. Ubuntu 12.04下安装配置体验GNOME 3(转载)

    转自:http://www.tuicool.com/articles/zIbeIj 自己并不是一个思想前卫的人,穿衣审美也都是大众眼光.但是唯独喜欢在计算机方便尝试最新,心肝情愿的做小白鼠.近日,按耐 ...

  9. ASP.NET Core MVC 打造一个简单的图书馆管理系统 (修正版)(一) 基本模型以及数据库的建立

    前言: 本系列文章主要为我之前所学知识的一次微小的实践,以我学校图书馆管理系统为雏形所作. 本系列文章主要参考资料: 微软文档:https://docs.microsoft.com/zh-cn/asp ...

  10. Tensor Operation

    Main operation categories that encompass the operations of tensors. Reshaping operations Element-wis ...