先打出nand表
0 nand 0=1
1 nand 1=0
0 nand 1=1
1 nand 0=1
 
容易发现(!a)=a nand a
然后(a&b)=!(a nand b)
然后(a|b)=!((!a)&(!b))
然后(a^b)=(a|b)&(a nand b)
 
所以通过nand我们可以实现任意一种位运算
所以每一位我们想得到0/1都是可以的
按道理[L,R]中符合位数要求的数都能得到
 
然而我们发现这样一个显然的结论:
如果A序列中每个数的第i位和第j位都相等,那么不论怎么nand,我们得到的数的第i位和第j位一定会相等。
不妨设这种限制条件为(i,j)。
 
于是我们统计[L,R]中符合这个限制条件的数即可。
 
首先从高位找x的第一个1,进行决策。
如果我们不选这个1,那么剩下的未决策位可以随便取,答案加上2^未决策位数。
如果我们选这个1,那么从这个1开始接下来一段的0必须取0(取1的话一定是大于R的数),于是直接考虑下一个1的决策。
再考虑限制条件。我们设xd[i]=符合(i,j)限制的最小j,那么决策第i位为1时,我们也会决策第xd[i]位必须为1。必须取0的决策同理。
如果准备决策某一位,发现其已经被限制,则我们需要判断一下,如果已有限制与当前要给它的决策一致,则不用管了。如果希望决策它为1但它必须为0,那么这一位我们只能决策它为0,加上答案,后面的1都不用再枚举了。如果希望决策它为0但它必须为1,那么说明没办法决策出符合要求的数,直接break。
这样得到的是[0,x-1]中符合要求的数,因为我们不选第一个1就可以决策到0,然而我们决策完最后一个1也决策不出x。
 
答案就是query(r+1)-query(l)。
 
(以上来自XZY大神犇空间。。。)
 
#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstring>
#include<cstdio>
#include<cmath>
using namespace std; typedef long long LL; LL k,n,l,r; LL a[1010<<2];
int s[110],xd[110];
int res; bool flag(true); bool check(int i,int j)
{
for (int m=1;m<=n;m++)
if (((a[m]>>i) ^ (a[m]>>j)) & 1)
return false;
return true;
} LL query(LL x)
{
LL ans=0;
if (x>=(1LL<<k))
return 1LL<<res;
int u,v=res;
for (int i=0;i<=64;i++)
s[i]=2;
for (int i=k-1;i>=0;i--)
{
u=xd[i];
if ((x>>i) & 1)
{
if (s[u]==2)
s[u]=1,v--,ans+=(1LL<<v);
else if (s[u]==0)
{
ans+=(1LL<<v);
break;
}
}
else
if (s[u]==2)
s[u]=0,v--;
else if (s[u]==1)
break;
}
return ans;
} int main()
{
scanf("%lld%lld%lld%lld",&n,&k,&l,&r);
for (int i=1;i<=n;i++)
scanf("%lld",&a[i]);
for (int i=0;i<=k-1;i++)
{
int j;
for (j=0;j<=i-1;j++)
if (check(i,j))
{
xd[i]=j;
break;
}
if (i==j)
xd[i]=i,res++;
}
LL s1=query(r+1);
LL s2=query(l);
printf("%lld",s1-s2);
return 0;
}

  

【bzoj2728】[HNOI2012]与非的更多相关文章

  1. BZOJ2728 HNOI2012与非(并查集+数位dp)

    容易发现x nand x=not x.并且使用这个性质有x and y=not(x nand y)=(x nand y)nand(x nand y).也就是说nand运算可以作为not和and运算使用 ...

  2. BZOJ2728: [HNOI2012]与非

    线性基乱搞,非正解= = #include<cstdio> int n,m; typedef long long ll; ll l[60],j,s,t; void up(ll& i ...

  3. 【BZOJ2728】[HNOI2012]与非 并查集+数位DP

    [BZOJ2728][HNOI2012]与非 Description Input 输入文件第一行是用空格隔开的四个正整数N,K,L和R,接下来的一行是N个非负整数A1,A2……AN,其含义如上所述.  ...

  4. 【BZOJ 2728】 2728: [HNOI2012]与非 (线性基?)

    2728: [HNOI2012]与非 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 813  Solved: 389 Description Inpu ...

  5. BZOJ 2728: [HNOI2012]与非

    2728: [HNOI2012]与非 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 786  Solved: 371[Submit][Status][ ...

  6. [HNOI2012]与非

    题目描述 NAND(与非)是一种二元逻辑运算,其运算结果为真当且仅当两个输入的布尔值不全为真.NAND运算的真值表如下(1表示真,0表示假): 两个非负整数的NAND是指将它们表示成二进制数,再在对应 ...

  7. BZOJ 2728: [HNOI2012]与非(位运算)

    题意 定义 NAND(与非)运算,其运算结果为真当且仅当两个输入的布尔值不全为真,也就是 A NAND B = NOT(A AND B) ,运算位数不会超过 \(k\) 位, 给你 \(n\) 个整数 ...

  8. BZOJ 2728 HNOI2012 与非 高斯消元

    题目大意:给定k位二进制下的n个数,求[l,r]区间内有多少个数能通过这几个数与非得到 首先观察真值表 我们有A nand A = not A 然后就有not ( A nand B ) = A and ...

  9. Luogu3220 HNOI2012 与非 数位DP

    传送门 题意:给出$N$个范围在$[0,2^k-1]$的整数,定义位运算$NAND$为位运算$AND$的逆运算,求$[L,R]$中有多少数能成为若干个前面给出的整数.若干括号和$NAND$运算组成的表 ...

随机推荐

  1. ORACLE中的游标Cursor总结

    游标(Cursor):用来查询数据库,获取记录集合(结果集)的指针,可以让开发者一次访问一行结果集,在每条结果集上作操作. 游标可分为: 1.       静态游标:分为显式(explicit)游标和 ...

  2. Android实战简易教程-第四十九枪(两种方式实现网络图片异步加载)

    加载图片属于比较耗时的工作,我们需要异步进行加载,异步加载有两种方式:1.通过AsyncTask类进行:2.通过Handler来实现,下面我们就来看一下如何通过这两种方式实现网络图片的异步加载. 一. ...

  3. 题解 洛谷P4035/BZOJ1013【[JSOI2008]球形空间产生器】

    题目链接在这QvQ "你要求出这个n维球体的球心坐标",这使我想到的解方程...... 先假设n=2,这是一个二维平面.设圆心的坐标为\((x,y)\),有两个坐标\((a_1,b ...

  4. 通过更改scrapy源码进行spider分发实现一个综合爬虫

    最近我正写一个项目,项目的需求如下一,要爬取大约100种几百个网页的类容,并且这些网页的爬取频率不一样,有些一天爬取一次,有些一周爬取一次,二,网页爬取内容有变化,也就是说要爬取的内容会根据需求进行改 ...

  5. c++基础_字符串对比

    #include <iostream> #include <string.h> #include <algorithm> using namespace std; ...

  6. scrapy爬取简书整站文章

    在这里我们使用CrawlSpider爬虫模板, 通过其过滤规则进行抓取, 并将抓取后的结果存入mysql中,下面直接上代码: jianshu_spider.py # -*- coding: utf-8 ...

  7. mac 文本处理命令分享

    mac 文本处理命令分享 */--> pre.src {background-color: #292b2e; color: #b2b2b2;} pre.src {background-color ...

  8. Springboot开启事务

    参考资料: https://blog.csdn.net/message_lx/article/details/77584847

  9. MySQL MGR源码分析2 - 从start group_replication看MGR代码框架

    此文已由作者温正湖授权网易云社区发布. 欢迎访问网易云社区,了解更多网易技术产品运营经验. 上一篇我们从方案层面讲解了MGR的成员管理和故障恢复.本篇从源码层面捋一捋,通过本篇介绍,除了能够了解如何将 ...

  10. MySQL数据库连接不上的一种可能的解决办法

    右键单击我的电脑->管理->服务和应用程序->服务,右键停止如图所示的服务