二叉堆 及 大根堆的python实现
Python
二叉堆(binary heap)
二叉堆是一种特殊的堆,二叉堆是完全二叉树或者是近似完全二叉树。二叉堆满足堆特性:父节点的键值总是保持固定的序关系于任何一个子节点的键值,且每个节点的左子树和右子树都是一个二叉堆。
当父节点的键值总是大于或等于任何一个子节点的键值时为最大堆。 当父节点的键值总是小于或等于任何一个子节点的键值时为最小堆。
二叉堆的存储
二叉堆一般用数组来表示。如果根节点在数组中的位置是1,第n个位置的子节点分别在2n和 2n+1。因此,第1个位置的子节点在2和3,第2个位置的子节点在4和5。以此类推。这种基于1的数组存储方式便于寻找父节点和子节点。
如果存储数组的下标基于0,那么下标为i的节点的子节点是2i + 1与2i + 2;其父节点的下标是⌊floor((i − 1) ∕ 2)⌋, 函数floor(x), 其功能是“向下取整”,或者说“向下舍入”,即取不大于x的最大整数(与“四舍五入”不同,下取整是直接取按照数轴上最接近要求值的左边值,即不大于要求值的最大的那个值)。比如floor(1.1),floor(1.9)都是返回1。
如下图的两个堆:
将这两个堆保存在以1开始的数组中:
位置: 1 2 3 4 5 6 7 8 9 10 11
左图: 1 2 3 4 5 6 7 8 9 10 11
右图: 11 9 10 5 6 7 8 1 2 3 4
对于一个很大的堆,这种存储是低效的。因为节点的子节点很可能在另外一个内存页中。B-heap是一种效率更高的存储方式,把每个子树放到同一内存页。
如果用指针链表存储堆,那么需要能访问叶节点的方法。可以对二叉树“穿线”(threading)方式,来依序遍历这些节点。
基本操作
插入节点
在数组的最末尾插入新节点。然后自下而上调整子节点与父节点(称作up-heap或bubble-up, percolate-up, sift-up, trickle up, heapify-up, cascade-up操作):比较当前节点与父节点,不满足堆性质则交换。从而使得当前子树满足二叉堆的性质。时间复杂度为O(log n)。
删除节点
删除根节点用于堆排序。
对于最大堆,删除根节点就是删除最大值;对于最小堆,是删除最小值。然后,把堆存储的最后那个节点移到填在根节点处。再从上而下调整父节点与它的子节点:对于最大堆,父节点如果小于具有最大值的子节点,则交换二者。这一操作称作down-heap或bubble-down, percolate-down, sift-down, trickle down, heapify-down, cascade-down,extract-min/max等。直至当前节点与它的子节点满足堆性质为止。
构造二叉堆
一个直观办法是从单节点的二叉堆开始,每次插入一个节点。其时间复杂度为 {\displaystyle O(n\log n)} O(n\log n)。
最优算法是从一个节点元素任意放置的二叉树开始,自底向上对每一个子树执行删除根节点时的Max-Heapify算法(这是对最大堆而言)使得当前子树成为一个二叉堆。具体而言,假设高度为h的子树均已完成二叉堆化,那么对于高度为h+1的子树,把其根节点沿着最大子节点的分枝做调整,最多需要h步完成二叉堆化。可以证明,这个算法的时间复杂度为O(n)。
代码
#!/usr/bin/env python2
# -*- coding: utf-8 -*-
"""
@author: gsharp
"""
class BinaryHeap:
def __init__(self, n):
self.heap = [0] * n
self.size = 0
def remove_min(self):
removed = self.heap[0]
self.size -= 1
self.heap[0] = self.heap[self.size]
self._down(0)
return removed
def add(self, value):
self.heap[self.size] = value
self._up(self.size)
self.size += 1
def _up(self, pos):
while pos > 0:
parent = (pos - 1) // 2
if self.heap[pos] >= self.heap[parent]:
break
self.heap[pos], self.heap[parent] = self.heap[parent], self.heap[pos]
pos = parent
def _down(self, pos):
while True:
child = 2 * pos + 1
if child >= self.size:
break
if child + 1 < self.size and self.heap[child + 1] < self.heap[child]:
child += 1
if self.heap[pos] <= self.heap[child]:
break
self.heap[pos], self.heap[child] = self.heap[child], self.heap[pos]
pos = child
def test():
h = BinaryHeap(10)
h.add(5)
h.add(7)
h.add(9)
h.add(4)
h.add(3)
print(h.heap)
h.add(1)
print(h.heap)
h.add(2)
print(h.heap)
print(h.remove_min())
print(h.remove_min())
print(h.remove_min())
test()
二叉堆 及 大根堆的python实现的更多相关文章
- PAT树_层序遍历叶节点、中序建树后序输出、AVL树的根、二叉树路径存在性判定、奇妙的完全二叉搜索树、最小堆路径、文件路由
03-树1. List Leaves (25) Given a tree, you are supposed to list all the leaves in the order of top do ...
- 【425】堆排序方法(二叉堆)优先队列(PQ)
参考:漫画:什么是二叉堆? 大根堆 小根堆 参考:漫画:什么是堆排序? 参考:漫画:什么是优先队列? 参考:[video]视频--第14周10--第8章排序10--8.4选择排序3--堆排序2--堆调 ...
- Binary Heap(二叉堆) - 堆排序
这篇的主题主要是Heapsort(堆排序),下一篇ADT数据结构随笔再谈谈 - 优先队列(堆). 首先,我们先来了解一点与堆相关的东西.堆可以实现优先队列(Priority Queue),看到队列,我 ...
- 堆和索引堆的实现(python)
''' 索引堆 ''' ''' 实现使用2个辅助数组来做.有点像dat.用哈希表来做修改不行,只是能找到这个索引,而需要change操作 还是需要自己手动写.所以只能用双数组实现. #引入索引堆的核心 ...
- bzoj 1577: [Usaco2009 Feb]庙会捷运Fair Shuttle——小根堆+大根堆+贪心
Description 公交车一共经过N(1<=N<=20000)个站点,从站点1一直驶到站点N.K(1<=K<=50000)群奶牛希望搭乘这辆公交车.第i群牛一共有Mi(1& ...
- python下实现二叉堆以及堆排序
python下实现二叉堆以及堆排序 堆是一种特殊的树形结构, 堆中的数据存储满足一定的堆序.堆排序是一种选择排序, 其算法复杂度, 时间复杂度相对于其他的排序算法都有很大的优势. 堆分为大头堆和小头堆 ...
- Python实现二叉堆
Python实现二叉堆 二叉堆是一种特殊的堆,二叉堆是完全二元树(二叉树)或者是近似完全二元树(二叉树).二叉堆有两种:最大堆和最小堆.最大堆:父结点的键值总是大于或等于任何一个子节点的键值:最小堆: ...
- python 二叉堆
BinaryHeap() 创建一个新的,空的二叉堆. insert(k) 向堆添加一个新项. findMin() 返回具有最小键值的项,并将项留在堆中. delMin() 返回具有最小键值的项,从堆中 ...
- 二叉堆python实现
二叉堆是一种完全二叉树,我们可以使用列表来方便存储,也就是说,用列表将树的所有节点存储起来. 如下图,是小根堆方式的二叉堆,假设父节点的下标为p,则他的左孩子下标为2P+1,右孩子下标为2P+2 cl ...
随机推荐
- 500万url的es 批删除
bash 循环 算术计算 读写文件 [root@hadoop2 ~]# sh looh.sh1234LIZ1 2 3 4 0 1 2 3 4 5 6 7 8 9 10 0games:x:12:100 ...
- linux 设备树及节点引用【转】
本文转载自:http://blog.csdn.net/KjfureOne/article/details/51972854 1.ARM Linux社区为什么要引入设备树 Linux之父Linus To ...
- hibernate中id中的 precision 和 scale 作用
转自:https://www.cnblogs.com/IT-Monkey/p/4077570.html <hibernate-mapping> <class name=&qu ...
- akka设计模式系列(Actor模型)
谈到Akka就必须介绍Actor并发模型,而谈到Actor就必须看一篇叫做<A Universal Modular Actor Formalism for Artificial Intellig ...
- 03-vue实例生命周期和vue-resource
vue实例的生命周期 什么是生命周期:从Vue实例创建.运行.到销毁期间,总是伴随着各种各样的事件,这些事件,统称为生命周期! 生命周期钩子:就是生命周期事件的别名而已: 生命周期钩子 = 生命周期函 ...
- $P2121 拆地毯$
\(problem\) \(kruskal\)的模板题. #ifdef Dubug #endif #include <bits/stdc++.h> using namespace std; ...
- BZOJ 4304 tarjan+topsort+bitset
我就是想骗一骗访问量 先Tarjan搞出来所有的强连通分量 正向连边 反向连边 topsort一发 搞出来每个点可以到哪些点 和哪些点可以到这个点 对于每条边 与一下 就是答案 //By Siri ...
- Mac使用bootcamp安装win8.1出现网卡驱动没有安装问题
问题:没有网络连接 原因:在bootcamp烧的u盘里面其实附带了驱动,只是没有自动安装 解决:D:\BootCamp\Drivers\Broadcom\BroadcomWirelessWin8x64 ...
- sql 循环分割字符
DECLARE @Items VARCHAR(1000)='148' --待处理拼接字符串 --开始处理SET @Items=@Items+',' --必须追加“,”否则最后一个无法输出DECLARE ...
- vue项目杂记
vue项目杂记 文件目录结构 src main.js app.vue package.json webpack_config_dev.js 需要安装的包 1. vue cnpm i vue --sav ...