Connect the Graph

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)

Total Submission(s): 456    Accepted Submission(s): 144

Special Judge

Problem Description
Once there was a special graph. This graph had
n
vertices and some edges. Each edge was either white or black. There was no edge connecting one vertex and the vertex itself. There was no two edges connecting the same pair of vertices. It is special because the each vertex is connected to at most two black
edges and at most two white edges.



One day, the demon broke this graph by copying all the vertices and in one copy of the graph, the demon only keeps all the black edges, and in the other copy of the graph, the demon keeps all the white edges. Now people only knows there are
w0
vertices which are connected with no white edges,
w1
vertices which are connected with 1
white edges, w2
vertices which are connected with 2
white edges, b0
vertices which are connected with no black edges,
b1
vertices which are connected with 1
black edges and b2
vertices which are connected with 2
black edges.



The precious graph should be fixed to guide people, so some people started to fix it. If multiple initial states satisfy the restriction described above, print any of them.
 
Input
The first line of the input is a single integer
T (T≤700),
indicating the number of testcases.



Each of the following T
lines contains w0,w1,w2,b0,b1,b2.
It is guaranteed that 1≤w0,w1,w2,b0,b1,b2≤2000
and b0+b1+b2=w0+w1+w2.




It is also guaranteed that the sum of all the numbers in the input file is less than
300000.
 
Output
For each testcase, if there is no available solution, print
−1.
Otherwise, print m
in the first line, indicating the total number of edges. Each of the next
m
lines contains three integers x,y,t,
which means there is an edge colored t
connecting vertices x
and y.
t=0
means this edge white, and t=1
means this edge is black. Please be aware that this graph has no self-loop and no multiple edges. Please make sure that
1≤x,y≤b0+b1+b2.
 
Sample Input
2
1 1 1 1 1 1
1 2 2 1 2 2
 
Sample Output
-1
6
1 5 0
4 5 0
2 4 0
1 4 1
1 3 1
2 3 1
 
Author
XJZX
 
Source
 
Recommend
wange2014   |   We have carefully selected several similar problems for you:  

pid=5395" target="_blank">5395 5394 

pid=5393" target="_blank">5393 

pid=5392" target="_blank">5392 

pid=5391" target="_blank">5391 

 

构造法:

首先保证度数之和为偶数,即w1=b1=1 ,否则无解

又w0,w1,w2,b0,b1,b2均为正数 故

当n=4时,仅仅有1种情况 1 2 1 不是无解

当n≥4时,先构造2个环分别为白环,黑环

对于奇数n:



  白环 1 2 3 ... n



  黑环 1 3 5 ... n 2 4 6 ... n-1



对于偶数n:



  白环 1 2 3 ... n



  黑环 1 3 5 ... n-1 2 n n-2 n-4 ... 4

此时,对于每一个环而言,构造答案

1-2-2-...-2-2-1
1-1 1-1 .. 1-1
1-1 0 .. 0

#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<algorithm>
#include<functional>
#include<iostream>
#include<cmath>
#include<cctype>
#include<ctime>
using namespace std;
#define For(i,n) for(int i=1;i<=n;i++)
#define Fork(i,k,n) for(int i=k;i<=n;i++)
#define Rep(i,n) for(int i=0;i<n;i++)
#define ForD(i,n) for(int i=n;i;i--)
#define RepD(i,n) for(int i=n;i>=0;i--)
#define Forp(x) for(int p=pre[x];p;p=next[p])
#define Forpiter(x) for(int &p=iter[x];p;p=next[p])
#define Lson (x<<1)
#define Rson ((x<<1)+1)
#define MEM(a) memset(a,0,sizeof(a));
#define MEMI(a) memset(a,127,sizeof(a));
#define MEMi(a) memset(a,128,sizeof(a));
#define INF (2139062143)
#define F (100000007)
#define MAXD (2000+10)
#define MAXN (6000+10)
typedef long long ll;
ll mul(ll a,ll b){return (a*b)%F;}
ll add(ll a,ll b){return (a+b)%F;}
ll sub(ll a,ll b){return (a-b+llabs(a-b)/F*F+F)%F;}
void upd(ll &a,ll b){a=(a%F+b%F)%F;}
int a2[MAXN],a1[MAXN],n;
void calc(int *a,int n0,int n1,int n2,int p)
{
int i=1;
if (n1==0&&n2==0) return;
For(i,n2+1)
{
printf("%d %d %d\n",a[i],a[i+1],p);
}
n1-=2;
for(int i=n2+3,j=1;j<=n1;i+=2,j+=2) printf("%d %d %d\n",a[i],a[i+1],p); }
int main()
{
// freopen("C.in","r",stdin);
// freopen(".out","w",stdout); int T; cin>>T;
while(T--) {
int w0,w1,w2,b0,b1,b2;
scanf("%d%d%d%d%d%d",&w0,&w1,&w2,&b0,&b1,&b2);
n=w0+w1+w2; //特判
if ((w1&1)||(b1&1)) { printf("-1\n");continue;} int m=(w1+2*w2+b1+2*b2)/2; if (n==4)
{
puts("4\n1 2 0\n1 3 0\n2 3 1\n3 4 1");
continue;
}
else if (n>4) {
For(i,n) a1[i]=i;
if (n%2==0)
{
for(int i=1,j=1;i<=n/2;i++,j+=2) a2[i]=j;
for(int i=n/2+1,j=2;i<=n;i++,j+=2) a2[i]=j;
a2[n+1]=1;
}
else {
for(int i=1,j=1;i<=n/2+1;i++,j+=2) a2[i]=j;
a2[n/2+2]=2;
for(int i=n/2+3,j=n-1;i<=n;i++,j-=2) a2[i]=j;
a2[n+1]=1;
}
cout<<m<<endl;
calc(a1,w0,w1,w2,0);
calc(a2,b0,b1,b2,1);
} } return 0;
}

HDU 5302(Connect the Graph- 构造)的更多相关文章

  1. [2015hdu多校联赛补题]hdu5302 Connect the Graph

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5302 题意:给你一个无向图,它的边要么是黑色要么是白色,且图上的每个点最多与两个黑边两个白边相连.现在 ...

  2. HDU 6343.Problem L. Graph Theory Homework-数学 (2018 Multi-University Training Contest 4 1012)

    6343.Problem L. Graph Theory Homework 官方题解: 一篇写的很好的博客: HDU 6343 - Problem L. Graph Theory Homework - ...

  3. HDU 4725 The Shortest Path in Nya Graph [构造 + 最短路]

    HDU - 4725 The Shortest Path in Nya Graph http://acm.hdu.edu.cn/showproblem.php?pid=4725 This is a v ...

  4. HDU 5876:Sparse Graph(BFS)

    http://acm.hdu.edu.cn/showproblem.php?pid=5876 Sparse Graph Problem Description   In graph theory, t ...

  5. hdu 3371 Connect the Cities

    题目连接 http://acm.hdu.edu.cn/showproblem.php?pid=3371 Connect the Cities Description In 2100, since th ...

  6. HDU - 6313 Hack It(构造)

    http://acm.hdu.edu.cn/showproblem.php?pid=6313 题意 让你构造一个矩阵使得里面不存在四个顶点都为1的矩形,并且矩阵里面1的个数要>=85000 分析 ...

  7. HDU 3371 Connect the Cities(prim算法)

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=3371 Problem Description In 2100, since the sea leve ...

  8. hdu 3371 Connect the Cities(最小生成树)

    题目:http://acm.hdu.edu.cn/showproblem.php?pid=3371 984ms风险飘过~~~ /************************************ ...

  9. HDU 6343 - Problem L. Graph Theory Homework - [(伪装成图论题的)简单数学题]

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6343 Time Limit: 2000/1000 MS (Java/Others) Memory Li ...

随机推荐

  1. perl学习之:@_ $_

    question 1 :数组@xxx调用时,每个元素应该用$xxx[0]/$xxx[1]...   来表示所以$_[0]表示@_的一个元素,和默认缺省变量$_无关,是两个东西请查阅数组元素调用相关章节 ...

  2. 【转】Unable to load native-hadoop library for your platform(已解决)

    1.增加调试信息寻找问题 2.两种方式解决unable to load native-hadoop library for you platform 附:libc/glibc/glib简介 参考: 1 ...

  3. python_面向对象笔记

    继承 什么是继承? 继承是一种新建类的方式,新建的类称为子类或派生类父类又称为基类.超类 子类可以“遗传”父类的属性,从而可以减少代码冗余 如何寻找继承关系?先抽象,再继承,继承描述的就是一种父子关系 ...

  4. 2018 GDCPC 省赛总结

    第二次参加省赛了,对比上年连STL都不会的acm入门者来说, 今年是接触acm的第二年. 首先要说的是今年的省赛比上年人数多了很多, 闭幕式200多支队伍坐满了整个礼堂还要站着不少人,所以今年的竞争其 ...

  5. POJ 1236 Network of Schools (强连通分量缩点求度数)

    题意: 求一个有向图中: (1)要选几个点才能把的点走遍 (2)要添加多少条边使得整个图强联通 分析: 对于问题1, 我们只要求出缩点后的图有多少个入度为0的scc就好, 因为有入度的scc可以从其他 ...

  6. Educational Codeforces Round 50 (Rated for Div. 2)的A、B、C三题AC代码

    A题链接:https://codeforces.com/contest/1036/problem/A A题AC代码: #include <stdio.h> #include <std ...

  7. HDU 5468 Puzzled Elena

    Puzzled Elena Time Limit: 2500ms Memory Limit: 131072KB This problem will be judged on HDU. Original ...

  8. CodeForces 556 --Case of Fake Numbers

    B. Case of Fake Numbers time limit per test 2 seconds memory limit per test 256 megabytes input stan ...

  9. 公路修建(Prim)

    洛谷传送门 这道水题告诉了我,堆优化的prim有时还不如朴素prim快... 居然记错时间复杂度了,我也真是菜. #include <cstdio> #include <queue& ...

  10. Toad Oracle 本地/远程数据库导入/导出 数据库备份

    1. Toad进入数据库后,选择 Database ==> Export  ===>  Export Utility Wizard ,选择export  user(按用户导出),选择Toa ...