https://leetcode.com/problems/water-and-jug-problem/description/ -- 365

There are two methods to solve this problem : GCD(+ elementary number theory) --> how to get GCF, HCD,  BFS

Currently, I sove this by first method

1. how to compute GCD recursively

//get the GCD of two number s
int GCD(int a, int b){
if(a == 0) return b;
if(b == 0) return a;
return GCD(b,a%b);
}

12, 8  -> 8,4 -> 4, 4 -> 4, 0

math solution

Bézout's identity (also called Bézout's lemma) is a theorem in the elementary theory of numbers:

let a and b be nonzero integers and let d be their greatest common divisor. Then there exist integers x
and y such that ax+by=d

In addition, the greatest common divisor d is the smallest positive integer that can be written as ax + by

every integer of the form ax + by is a multiple of the greatest common divisor d.

If a or b is negative this means we are emptying a jug of x or y gallons respectively.

Similarly if a or b is positive this means we are filling a jug of x or y gallons respectively.

x = 4, y = 6, z = 8.

GCD(4, 6) = 2

8 is multiple of 2

so this input is valid and we have:

-1 * 4 + 6 * 2 = 8

In this case, there is a solution obtained by filling the 6 gallon jug twice and emptying the 4 gallon jug once. (Solution. Fill the 6 gallon jug and empty 4 gallons to the 4 gallon jug. Empty the 4 gallon jug. Now empty the remaining two gallons from the 6 gallon jug to the 4 gallon jug. Next refill the 6 gallon jug. This gives 8 gallons in the end)

code:

class Solution {
public boolean canMeasureWater(int x, int y, int z) {
//check the limitiation which x + y < z such as 3,4 , 8: notmeeting the requirement
if(x+ y < z) return false;
//check all 0
System.out.println(GCD(x,y));
//there is a theory about that
//ax + by = gcd z%gcd == 0 Bézout's identity
if(GCD(x,y) == 0) return z==0;
else return (z%GCD(x,y)==0);
} //get the GCD of two number s
int GCD(int a, int b){
if(a == 0) return b;
if(b == 0) return a;
return GCD(b,a%b);
} }

--------------------------------------------------------------------------------------------------------------------------------

BFS method

365. Water and Jug Problem (GCD or BFS) TBC的更多相关文章

  1. 365. Water and Jug Problem量杯灌水问题

    [抄题]: 简而言之:只能对 杯子中全部的水/容量-杯子中全部的水进行操作 You are given two jugs with capacities x and y litres. There i ...

  2. 【LeetCode】365. Water and Jug Problem 解题报告(Python)

    作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 数学题 相似题目 参考资料 日期 题目地址:http ...

  3. 【leetcode】365. Water and Jug Problem

    题目描述: You are given two jugs with capacities x and y litres. There is an infinite amount of water su ...

  4. Leetcode 365. Water and Jug Problem

    可以想象有一个无限大的水罐,如果我们有两个杯子x和y,那么原来的问题等价于是否可以通过往里面注入或倒出水从而剩下z. z =? m*x + n*y 如果等式成立,那么z%gcd(x,y) == 0. ...

  5. 365. Water and Jug Problem

    莫名奇妙找了个奇怪的规律. 每次用大的减小的,然后差值和小的再减,减减减减减减到差值=0为止.(较小的数 和 差值 相等为止,这么说更确切) 然后看能不能整除就行了. 有些特殊情况. 看答案是用GCD ...

  6. 365 Water and Jug Problem 水壶问题

    有两个容量分别为 x升 和 y升 的水壶以及无限多的水.请判断能否通过使用这两个水壶,从而可以得到恰好 z升 的水?如果可以,最后请用以上水壶中的一或两个来盛放取得的 z升 水.你允许:    装满任 ...

  7. Leetcode: Water and Jug Problem && Summary: GCD求法(辗转相除法 or Euclidean algorithm)

    You are given two jugs with capacities x and y litres. There is an infinite amount of water supply a ...

  8. [LeetCode] Water and Jug Problem 水罐问题

    You are given two jugs with capacities x and y litres. There is an infinite amount of water supply a ...

  9. [Swift]LeetCode365. 水壶问题 | Water and Jug Problem

    You are given two jugs with capacities x and y litres. There is an infinite amount of water supply a ...

随机推荐

  1. Educational Codeforces Round 13 C

    Description Little Joty has got a task to do. She has a line of n tiles indexed from 1 to n. She has ...

  2. Tomcat-猫

    第1章 Tomcat简介 Tomcat  是一个web服务器 ,类似nginx,apache的http Nginx  http 只能处理html等静态文件jpg() 网页分为静态网页(以.html 或 ...

  3. iOS WebDriverAgent 环境搭建

    WebDriverAgent简介 WebDriverAgent是Facebook 在去年的 SeleniumConf 大会上推出了一款新的iOS移动测试框架.当时的推文申明,还只支持模拟器,不过在今年 ...

  4. /var 目录下文件系统

    /var    :日志文件/var/log:各种系统日志存放地*/var/log/message :系统信息默认日志文件 (非常重要)按周自动轮循/var/log/secure  :记录登入系统信息文 ...

  5. Linux数组基础

    执行结果:

  6. getResourceAsStream小结

    前提:我用的是gradle工程,文件放在resource下,resource对应的就是类路径,文件的路径和代码的路径保持一致,如Client的包名和peizhi.properties一致,例如Clie ...

  7. leetcode 175 Combine Two Tables join用法

    https://leetcode.com/problemset/database/ ACM退役,刚好要学sql,一定要刷题才行,leetcode吧. 这一题,说了两个表,一个左一个右吧,左边的pers ...

  8. [转]HTML字符实体(Character Entities),转义字符串(Escape Sequence)

    为什么要用转义字符串? HTML中<,>,&等有特殊含义(<,>,用于链接签,&用于转义),不能直接使用.这些符号是不显示在我们最终看到的网页里的,那如果我们希 ...

  9. Collections练习之按照字符串长度进行排序

    不多说,直接上干货! 代码需求 想从 [abcde, cba, aa, zzz, cba, nbaa] 变成 [aa, cba, cba, zzz, nbaa, abcde] CollectionsD ...

  10. swing线程机制

    在介绍swing线程机制之前,先介绍一些背景概念. 背景概念 同步与异步:     同步是指程序在发起请求后开始处理事件并等待处理的结果或等待请求执行完毕,在此之前程序被阻塞(block)直到请求完成 ...