【[TJOI2018]碱基序列】
为什么没人用\(SAM\)啊
我们先把原来的模式串建一遍\(SAM\),之后我们就可以求出\(SAM\)上每一个节点的\(|endpos|\)就可以知道每一个子串出现的次数了,也就是在模式串上的匹配数了
之后我们设\(dp[i][j]\)表示前\(i\)个里组合出的子串在\(SAM\)上匹配到了\(j\)位置的方案数是多少,转移的时候就枚举每一个子串以及\(SAM\)上的每一个节点之后跑匹配就好了
最后的答案就是
\]
之后第一维甚至可以直接滚动掉
代码
#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
#define maxn 100005
#define re register
#define LL long long
#define max(a,b) ((a)>(b)?(a):(b))
#define min(a,b) ((a)<(b)?(a):(b))
const int mod=1e9+7;
struct E{int v,nxt;}e[maxn<<1];
int fa[maxn<<1],son[maxn<<1][26],len[maxn<<1],head[maxn<<1],sz[maxn<<1];
char S[maxn];
int dp[2][maxn<<1];
int n,m,num,cnt=1,lst=1,ans,o;
inline void add(int x,int y) {e[++num].v=y;e[num].nxt=head[x];head[x]=num;}
void dfs(int x) {for(re int i=head[x];i;i=e[i].nxt) dfs(e[i].v),sz[x]+=sz[e[i].v];}
inline void ins(int c)
{
int f=lst,p=++cnt; lst=p;
len[p]=len[f]+1,sz[p]=1;
while(f&&!son[f][c]) son[f][c]=p,f=fa[f];
if(!f) {fa[p]=1;return;}
int x=son[f][c];
if(len[f]+1==len[x]) {fa[p]=x;return;}
int y=++cnt; len[y]=len[f]+1,fa[y]=fa[x],fa[x]=fa[p]=y;
for(re int i=0;i<26;i++) son[y][i]=son[x][i];
while(f&&son[f][c]==x) son[f][c]=y,f=fa[f];
}
inline int find(int now) {for(re int i=1;i<=n;i++) {now=son[now][S[i]-'A'];if(!now) break;}return now;}
int main()
{
scanf("%d",&m);scanf("%s",S+1);n=strlen(S+1);
for(re int i=1;i<=n;i++) ins(S[i]-'A');
for(re int i=2;i<=cnt;i++) add(fa[i],i);dfs(1);
dp[0][1]=1; o=0;
for(re int i=1;i<=m;i++)
{
int T; o^=1; scanf("%d",&T);
for(re int j=1;j<=cnt;j++) dp[o][j]=0;
for(re int j=1;j<=T;j++)
{
scanf("%s",S+1);n=strlen(S+1);
for(re int k=1;k<=cnt;k++)
if(dp[o^1][k]) {int v=find(k);if(v) dp[o][v]=(dp[o][v]+dp[o^1][k])%mod;}
}
}
for(re int i=2;i<=cnt;i++) ans=(ans+(LL)dp[o][i]*(LL)sz[i]%mod)%mod;
printf("%d\n",ans);
return 0;
}
【[TJOI2018]碱基序列】的更多相关文章
- 洛谷P4591 [TJOI2018]碱基序列(hash dp)
题意 题目链接 Sol \(f[i][j]\)表示匹配到第\(i\)个串,当前在主串的第\(j\)个位置 转移的时候判断一下是否可行就行了.随便一个能搞字符串匹配的算法都能过 复杂度\(O(|S| K ...
- [TJOI2018]碱基序列
嘟嘟嘟 现在看到字符串就想到SAM,所以很担心kmp啥的会不会忘了-- 这题感觉挺暴力的:首先当然要把\(s\)建成SAM,然后令\(dp[i][j]\)表示到第\(i\)组时,SAM上节点\(j\) ...
- BZOJ5337 [TJOI2018] 碱基序列 【哈希】【动态规划】
题目分析: 这道题的难点在于要取模,而题面没有写. 容易想到一个O(1E7)的dp.KMP或者哈希得到相关位置然后对于相关位置判断上一个位置有多少种情况. 代码: #include<bits/s ...
- 洛谷P4591 [TJOI2018]碱基序列 【KMP + dp】
题目链接 洛谷P4591 题解 设\(f[i][j]\)表示前\(i\)个串匹配到位置\(j\)的方案数,匹配一下第\(i\)个串进行转移即可 本来写了\(hash\),发现没过,又写了一个\(KMP ...
- 「学习笔记」字符串基础:Hash,KMP与Trie
「学习笔记」字符串基础:Hash,KMP与Trie 点击查看目录 目录 「学习笔记」字符串基础:Hash,KMP与Trie Hash 算法 代码 KMP 算法 前置知识:\(\text{Border} ...
- bzoj 5338: [TJOI2018]xor (树链剖分+可持久化01Trie)
链接:https://www.lydsy.com/JudgeOnline/problem.php?id=5338 题面: 5338: [TJOI2018]xor Time Limit: 30 Sec ...
- [模板] dp套dp && bzoj5336: [TJOI2018]party
Description Problem 5336. -- [TJOI2018]party Solution 神奇的dp套dp... 考虑lcs的转移方程: \[ lcs[i][j]=\begin{ca ...
- 洛谷P4590 [TJOI2018]游园会(状压dp LCS)
题意 题目链接 Sol 这个题可能是TJOI2018唯一的非模板题了吧.. 考虑LCS的转移方程, \[f[i][j] = max(f[i - 1][j], f[i][j - 1], f[i - 1] ...
- 【BZOJ5339】[TJOI2018]教科书般的亵渎(斯特林数)
[BZOJ5339][TJOI2018]教科书般的亵渎(斯特林数) 题面 BZOJ 洛谷 题解 显然交亵渎的次数是\(m+1\). 那么这题的本质就是让你求\(\sum_{i=1}^n i^{m+1} ...
随机推荐
- 创建Banner
org.springframework.boot.SpringApplicationBannerPrinter#print(org.springframework.core.env.Environme ...
- my06_sysbench install for mysql 并初始化表数据
sysbench安装 ************************************************************** 安装sysbench依赖包 rpm -q autom ...
- 手工安装XDB 组件in oracle 11g
#############. sample 1 install guide below step is only for oracle 11g database installation, 10g d ...
- JavaSE---反射(未完待续)
1.概述 1.1 Java程序中许多对象在运行时会出现2种类型:编译时类型.运行时类型: eg:Person person=new Student(); 这行代码在编译时为Person类型,运行时为 ...
- 前台js escape及后台C# Server.UrlEncode 对QueryString传参的含~!@#$%^&*等特殊字符的处理
通常情况下,我们在List列表页面,会包含Create,Edit,Delete等操作按钮, 而通常的处理是: Create按钮跳转到DataCreate.aspx Edit按钮跳转到DataEdit. ...
- java多线程通过管道流实现不同线程之间的通信
java中的管道流(pipeStream)是一种特殊的流,用于在不同线程间直接传送数据.一个线程发送数据到输出管道,另外一个线程从输入管道中读取数据.通过使用管道,实现不同线程间的通信,而不必借助类似 ...
- linux工具:快速返回某级父目录--bd
当我们在linux服务器上切换父目录时,通常使用cd ../../,有几级目录就输入几次"../",如果目录嵌套的过深,就会有点晕菜...因此,本次介绍的这款工具,可以快速的返回指 ...
- HDU 5371——Hotaru's problem——————【manacher处理回文】
Hotaru's problem Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others) ...
- HDU 5353—— Average——————【贪心+枚举】
Average Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 131072/131072 K (Java/Others)Total S ...
- .NET面试题1
1. const和readonly有什么区别? const关键字用来声明编译时常量,readonly用来声明运行时常量.都可以标识一个常量,主要有以下区别: 1.初始化位置不同.const必须在声明的 ...