算法调参 weight_ratio, weight_seqratio
from openpyxl import Workbook
import xlrd
import time
import Levenshtein as Le target_city_list = ['北京市', '上海市', '深圳市', '广州市']
source_name = 'JMTool任务_csv_py_wholeCSV-加百度170826165729'
BDpoi_list_tag, BDpoi_list_tagb = '|-|', '|--|'
FEXCEL = '%s%s' % (source_name, '.xlsx') weight_ratio, weight_seqratio = 0.7, 0.3 def main_():
global source_name
data = xlrd.open_workbook(FEXCEL)
table = data.sheets()[0]
nrows, ncols = table.nrows, table.ncols
res_dic = {}
for i in range(0, nrows):
l = table.row_values(i)
dbid, area_code, ref_area_type_code, city, district, address, city_street, name_, BDpoi_list = l
if dbid == 'dbid':
continue
if city not in target_city_list:
continue
if city not in res_dic:
res_dic[city] = {}
if district not in res_dic[city]:
res_dic[city][district] = {}
if name_ not in res_dic[city][district]:
res_dic[city][district][name_] = [] if BDpoi_list.find(BDpoi_list_tag) == -1:
ll = dbid, area_code, ref_area_type_code, city, district, address, city_street, name_, BDpoi_list, '', '', ''
res_dic[city][district][name_].append(ll)
else:
addr_ = '%s%s%s%s' % (city, district, address, city_street)
chk_name_lsit, cmp_list, sorted_ratio_seqratio_res_dic = [name_, addr_], BDpoi_list.split(
BDpoi_list_tag), {}
for ii in cmp_list:
if len(ii) == 0:
continue
cmp_, BD_name, BD_addr = ['', ''], '', ''
cmp_one = ii.split(BDpoi_list_tagb)
if len(cmp_one) == 2:
# format data -fair
BD_name, BD_addr = cmp_[0], cmp_[1] = cmp_one[0], cmp_one[1].replace(city, '').replace(district, '')
else:
BD_name = cmp_[0] = cmp_one[0]
ratio_res, seqratio_res = Le.ratio(name_, BD_name), Le.seqratio(chk_name_lsit, cmp_)
ratio_seqratio_res = weight_ratio * ratio_res + weight_seqratio * seqratio_res
ll = dbid, area_code, ref_area_type_code, city, district, address, city_street, name_, BDpoi_list, BD_name, BD_addr, ratio_seqratio_res, ratio_res, seqratio_res
if ratio_seqratio_res not in sorted_ratio_seqratio_res_dic:
sorted_ratio_seqratio_res_dic[ratio_seqratio_res] = []
sorted_ratio_seqratio_res_dic[ratio_seqratio_res].append(ll)
sorted_seqratio_res_list = sorted(sorted_ratio_seqratio_res_dic)
for ratio_seqratio_res in sorted_seqratio_res_list:
lll = sorted_ratio_seqratio_res_dic[ratio_seqratio_res]
for vl in lll:
res_dic[city][district][name_].append(vl) wb = Workbook()
worksheet = wb.active
file_title_str = ' dbid, area_code, ref_area_type_code, city, district, address, city_street, name_, BDpoi_list, BD_name, BD_addr, ratio_seqratio_res, ratio_res, seqratio_res'
file_title_l = file_title_str.replace(' ', '').split(',')
worksheet.append(file_title_l)
for city in res_dic:
for district in res_dic[city]:
for name_ in res_dic[city][district]:
l = res_dic[city][district][name_]
for ll in l:
worksheet.append(ll)
localtime_ = time.strftime("%y%m%d%H%M%S", time.localtime())
file_name = '%s%s%s' % (source_name, '-Levenshtein', localtime_)
file_name_save = '%s%s' % (file_name, '.xlsx')
wb.save(file_name_save) wb = Workbook()
worksheet = wb.active
file_title_str = ' dbid, area_code, ref_area_type_code, city, district, address, city_street, name_,BDpoi_list,max_BD_name, max_BD_addr, max_ratio_seqratio_res, ratio_res, seqratio_res'
file_title_l = file_title_str.replace(' ', '').split(',')
worksheet.append(file_title_l)
for city in res_dic:
for district in res_dic[city]:
for name_ in res_dic[city][district]:
l = res_dic[city][district][name_]
lll = l[-1] worksheet.append(lll)
localtime_ = time.strftime("%y%m%d%H%M%S", time.localtime())
file_name = '%s%s%s' % (file_name, '-Levenshtein-ordered', localtime_)
file_name_save = '%s%s' % (file_name, '.xlsx')
wb.save(file_name_save) main_()
from openpyxl import Workbook
import xlrd
import time
import Levenshtein as Le target_city_list = ['深圳市']
BDpoi_list_tag, BDpoi_list_tagb = '|-|', '|--|' source_name = 'JMTool任务_csv_py_wholeCSV_住宅小区-加百度170826152533'
FEXCEL = '%s%s' % (source_name, '.xlsx')
weight_ratio, weight_seqratio = 0.7, 0.3 def main_():
global source_name
data = xlrd.open_workbook(FEXCEL)
table = data.sheets()[0]
nrows, ncols = table.nrows, table.ncols
res_dic = {}
for i in range(0, nrows):
l = table.row_values(i)
dbid, area_code, ref_area_type_code, city, district, address, city_street, name_, name_reduction, BDpoi_list = l
if dbid == 'dbid':
continue
if city not in target_city_list:
continue
if city not in res_dic:
res_dic[city] = {}
if district not in res_dic[city]:
res_dic[city][district] = {}
if name_ not in res_dic[city][district]:
res_dic[city][district][name_] = [] if BDpoi_list.find(BDpoi_list_tag) == -1:
ll = dbid, area_code, ref_area_type_code, city, district, address, city_street, name_, name_reduction, BDpoi_list, '', '', ''
res_dic[city][district][name_].append(ll)
else:
addr_ = '%s%s%s%s' % (city, district, address, city_street)
chk_name_lsit, cmp_list, sorted_ratio_seqratio_res_dic = [name_reduction, addr_], BDpoi_list.split(
BDpoi_list_tag), {}
for ii in cmp_list:
if len(ii) == 0:
continue
cmp_, BD_name, BD_addr = ['', ''], '', ''
cmp_one = ii.split(BDpoi_list_tagb)
if len(cmp_one) == 2:
# format data -fair
BD_name, BD_addr = cmp_[0], cmp_[1] = cmp_one[0], cmp_one[1].replace(city, '').replace(district, '')
else:
BD_name = cmp_[0] = cmp_one[0]
ratio_res, seqratio_res = Le.ratio(name_reduction, BD_name), Le.seqratio(chk_name_lsit, cmp_)
ratio_seqratio_res = weight_ratio * ratio_res + weight_seqratio * seqratio_res
ll = dbid, area_code, ref_area_type_code, city, district, address, city_street, name_, name_reduction, BDpoi_list, BD_name, BD_addr, ratio_seqratio_res, ratio_res, seqratio_res
if ratio_seqratio_res not in sorted_ratio_seqratio_res_dic:
sorted_ratio_seqratio_res_dic[ratio_seqratio_res] = []
sorted_ratio_seqratio_res_dic[ratio_seqratio_res].append(ll)
sorted_seqratio_res_list = sorted(sorted_ratio_seqratio_res_dic)
for ratio_seqratio_res in sorted_seqratio_res_list:
lll = sorted_ratio_seqratio_res_dic[ratio_seqratio_res]
for vl in lll:
res_dic[city][district][name_].append(vl) wb = Workbook()
worksheet = wb.active
file_title_str = 'dbid, area_code, ref_area_type_code, city, district, address, city_street, name_, name_reduction, BDpoi_list, BD_name, BD_addr, ratio_seqratio_res, ratio_res, seqratio_res'
file_title_l = file_title_str.replace(' ', '').split(',')
worksheet.append(file_title_l)
for city in res_dic:
for district in res_dic[city]:
for name_ in res_dic[city][district]:
l = res_dic[city][district][name_]
for ll in l:
worksheet.append(ll)
localtime_ = time.strftime("%y%m%d%H%M%S", time.localtime())
file_name = '%s%s%s' % (source_name, '-Levenshtein', localtime_)
file_name_save = '%s%s' % (file_name, '.xlsx')
wb.save(file_name_save) wb = Workbook()
worksheet = wb.active
file_title_str = 'dbid, area_code, ref_area_type_code, city, district, address, city_street, name_, name_reduction,BDpoi_list,max_BD_name, max_BD_addr, max_ratio_seqratio_res, ratio_res, seqratio_res'
file_title_l = file_title_str.replace(' ', '').split(',')
worksheet.append(file_title_l)
for city in res_dic:
for district in res_dic[city]:
for name_ in res_dic[city][district]:
l = res_dic[city][district][name_]
lll = l[-1] worksheet.append(lll)
localtime_ = time.strftime("%y%m%d%H%M%S", time.localtime())
file_name = '%s%s%s' % (file_name, '-Levenshtein-ordered', localtime_)
file_name_save = '%s%s' % (file_name, '.xlsx')
wb.save(file_name_save) main_()
算法调参 weight_ratio, weight_seqratio的更多相关文章
- annoy ANN算法 调参
search_k serach_k越大,越准确,但是要在时间和准确率之间取个trade off During the query it will inspect up to search_k node ...
- CatBoost算法和调参
欢迎关注博主主页,学习python视频资源 sklearn实战-乳腺癌细胞数据挖掘(博主亲自录制视频) https://study.163.com/course/introduction.htm?co ...
- k-近邻算法采用for循环调参方法
//2019.08.02下午#机器学习算法中的超参数与模型参数1.超参数:是指机器学习算法运行之前需要指定的参数,是指对于不同机器学习算法属性的决定参数.通常来说,人们所说的调参就是指调节超参数.2. ...
- 调参、最优化、ml算法(未完成)
最优化方法 调参方法 ml算法 梯度下降gd grid search lr 梯度上升 随机梯度下降 pca 随机梯度下降sgd 贝叶斯调参 lda 牛顿算法 knn 拟牛顿算法 kmeans ...
- scikit-learn随机森林调参小结
在Bagging与随机森林算法原理小结中,我们对随机森林(Random Forest, 以下简称RF)的原理做了总结.本文就从实践的角度对RF做一个总结.重点讲述scikit-learn中RF的调参注 ...
- scikit-learn 梯度提升树(GBDT)调参小结
在梯度提升树(GBDT)原理小结中,我们对GBDT的原理做了总结,本文我们就从scikit-learn里GBDT的类库使用方法作一个总结,主要会关注调参中的一些要点. 1. scikit-learn ...
- word2vec参数调整 及lda调参
一.word2vec调参 ./word2vec -train resultbig.txt -output vectors.bin -cbow 0 -size 200 -window 5 -neg ...
- 漫谈PID——实现与调参
闲话: 作为一个控制专业的学生,说起PID,真是让我又爱又恨.甚至有时候会觉得我可能这辈子都学不会pid了,但是经过一段时间的反复琢磨,pid也不是很复杂.所以在看懂pid的基础上,写下这篇文章,方便 ...
- hyperopt自动调参
hyperopt自动调参 在传统机器学习和深度学习领域经常需要调参,调参有些是通过通过对数据和算法的理解进行的,这当然是上上策,但还有相当一部分属于"黑盒" hyperopt可以帮 ...
随机推荐
- ASP.NET MVC学习---(七)Razor视图引擎语法
之前体验过razor视图引擎@符号的威力了吧~ 连我这个初学者都能感觉到确实省时省力方便快捷 简直就是居家旅行*人*货必备之物啊(这里和谐两个字~) 那么现在就开始对razor的语法进一步介绍~ 1. ...
- python中pickle简介
2017-04-10 pickle是用来加工数据的,可以用来存取结构化数据. 例如: 一个字典a = {'name':'Timmy','age':26},用pickle.dump存到本地文件,所存数据 ...
- Efficiently traversing InnoDB B+Trees with the page directory--slot
Efficientlytraversing InnoDB B+Trees with the page directory 1.the purpose of the page directory As ...
- Mysql 创建权限较小的用户(只对特定数据库有操作权限)
项目开发过程中,因为root的权限太大,可能对其他数据库造成修改.故创建一权限较小的用户,使其只能对特定的数据库操作,以保证数据安全. 主要语句如下: grant all on bos19.* to ...
- Selenium3.14.1+Python安装和第一个Demo
言简意赅的说下Selenium是什么 Selenium是前台测试框架,支持IE(7, 8, 9, 10, 11),Mozilla Firefox,Safari,Google Chrome等浏览器,我只 ...
- RAII手法封装相互排斥锁
CriticalSectionWrapper是一个接口类 class CriticalSectionWrapper { public: // Factory method, constructor d ...
- STM32 寄存器库和固件库
寄存器和固件库开发的差别和联系 固件库就是函数的集合,固件库函数的作用是向下负责与寄存器直接打交道.向上提供用户函数调用的接口(API). 在 51 的开发中我们经常的作法是直接操作寄存器,比方要控制 ...
- IIS8应用池重启脚本
重启 IIS8 应用程序池的批处理 批处理很简单:c:\windows\system32\inetsrv\AppCmd.exe stop apppool /apppool.name:"ASP ...
- 怎样取消不能改动(仅仅读打开)的word文件的password
作者:iamlaosong 朋友给我一个文档,是加了防改动password的,希望我能帮其取消.由于须要原文档的格式,取消方法例如以下(office2007环境): 1.打开文件.文件打开时,提演示样 ...
- 机器学习2—K近邻算法学习笔记
Python3.6.3下修改代码中def classify0(inX,dataSet,labels,k)函数的classCount.iteritems()为classCount.items(),另外p ...