《训练指南》p.108

#include <cstdio>
#include <cstring>
#include <cstdlib> using namespace std; const int MOD = ; const int MAXN = ; int C[MAXN][MAXN]; void init()
{
memset( C, , sizeof(C) );
C[][] = ;
for ( int i = ; i < MAXN; ++i )
{
C[i][] = C[i][i] = ;
for ( int j = ; j < i; ++j )
C[i][j] = ( C[i-][j] + C[i-][j-] ) % MOD;
}
return;
} int main()
{
init();
int T, cas = ;
scanf( "%d", &T );
while ( T-- )
{
int M, N, K;
int ans = ;
scanf( "%d%d%d", &M, &N, &K );
for ( int S = ; S < ( << ); ++S )
{
int cnt = ;
int r = M, c = N;
if ( S & ) --r, ++cnt;
if ( S & ) --r, ++cnt;
if ( S & ) --c, ++cnt;
if ( S & ) --c, ++cnt;
if ( cnt & ) ans = ( ans + MOD - C[r*c][K] )%MOD;
else ans = ( ans + C[r*c][K] )%MOD;
}
printf( "Case %d: %d\n", ++cas, ans );
}
return ;
}

UVa 11806 - Cheerleaders (组合计数+容斥原理)的更多相关文章

  1. UVA.11806 Cheerleaders (组合数学 容斥原理 二进制枚举)

    UVA.11806 Cheerleaders (组合数学 容斥原理 二进制枚举) 题意分析 给出n*m的矩形格子,给出k个点,每个格子里面可以放一个点.现在要求格子的最外围一圈的每行每列,至少要放一个 ...

  2. uva 11806 Cheerleaders

    // uva 11806 Cheerleaders // // 题目大意: // // 给你n * m的矩形格子,要求放k个相同的石子,使得矩形的第一行 // 第一列,最后一行,最后一列都必须有石子. ...

  3. 集训队8月9日(组合计数+容斥原理+Mobius函数)

    刷题数:4 今天看了组合计数+容斥原理+Mobius函数,算法竞赛进阶指南169~179页 组合计数 https://www.cnblogs.com/2462478392Lee/p/11328938. ...

  4. BZOJ 4555: [Tjoi2016&Heoi2016]求和 [FFT 组合计数 容斥原理]

    4555: [Tjoi2016&Heoi2016]求和 题意:求\[ \sum_{i=0}^n \sum_{j=0}^i S(i,j)\cdot 2^j\cdot j! \\ S是第二类斯特林 ...

  5. UVA 11806 Cheerleaders (组合+容斥原理)

    自己写的代码: #include <iostream> #include <stdio.h> #include <string.h> /* 题意:相当于在一个m*n ...

  6. UVa 11806 Cheerleaders (容斥原理+二进制表示状态)

    In most professional sporting events, cheerleaders play a major role in entertaining the spectators. ...

  7. UVA 11806 Cheerleaders (容斥原理)

    题意 一个n*m的区域内,放k个啦啦队员,第一行,最后一行,第一列,最后一列一定要放,一共有多少种方法. 思路 设A1表示第一行放,A2表示最后一行放,A3表示第一列放,A4表示最后一列放,则要求|A ...

  8. UVA 11806 Cheerleaders (容斥原理

    1.题意描述 本题大致意思是讲:给定一个广场,把它分为M行N列的正方形小框.现在给定有K个拉拉队员,每一个拉拉队员需要站在小框内进行表演.但是表演过程中有如下要求: (1)每一个小框只能站立一个拉拉队 ...

  9. UVa 11806 Cheerleaders (数论容斥原理)

    题意:给定一个n*m的棋盘,要放k个石子,要求第一行,最后一行,第一列,最后一列都有石子,问有多少种放法. 析:容斥原理,集合A是第一行没有石子,集合B是最后一行没有石子,集合C是第一列没有石子,集合 ...

随机推荐

  1. 实现接口Controller定义控制器

    实现接口Controller定义控制器 控制器提供访问应用程序的行为,通常通过服务接口定义或注解定义两种方法实现. 控制器解析用户的请求并将其转换为一个模型.在Spring MVC中一个控制器可以包含 ...

  2. js将数字转换成中文

           var _change = {            ary0:["零", "一", "二", "三", ...

  3. C#定义常量的两种方法

    在C#中定义常量的方式有两种,一种叫做静态常量(Compile-time constant),另一种叫做动态常量(Runtime constant).前者用“const”来定义,后者用“readonl ...

  4. 深入理解JVM类加载机制

    1.什么是类加载机制? JVM把class文件加载到内存里面,并对数据进行验证.准备.解析和初始化,最终能够被形成被JVM可以直接使用的Java类型的过程. 生命周期包含:加载,验证,准备,解析,初始 ...

  5. python__标准库 : 正则表达式(re)

    re.match 尝试从字符串的起始位置匹配一个模式,如果不是起始位置匹配成功的话,match()就返回none. re.search 扫描整个字符串并返回第一个成功的匹配. 替换: re.sub(p ...

  6. laravel EncryptCookies中间件导致无法获取自定义cookie

    解决办法: \app\Http\Middleware\EncryptCookies.php 添加过滤cookie key protected $except = [ 'token' ];

  7. php-安装与配置-未完待续2

    一,准备工作 在入门指引中,我们已经知道PHP的3个应用领域,不同的场景,需要安装的东西是不同的.具体如下: 服务器端脚本,在通常情况下,需要三样东西:PHP 自身.一个 web 服务器和一个 web ...

  8. arm-none-linux-gnueabi-gcc No such file or directory这个错误的解决方法

    这个gcc可执行文件是32位的版本,而在64位系统上需要安装32位兼容包才可以运行正常 .用file命令查看这个文件得到: 解决办法: 安装ia32-libs sudo apt-get install ...

  9. Python系列6之面向对象

    目录 生成器和迭代器 字符串格式化 内置函数vars 反射 面向对象编程 一. 生成器和迭代器  1. 生成器 生成器具有一种生成的能力,它仅仅代表着一种生成的能力,当我们需要使用的时候,才会通过迭代 ...

  10. 笔记-python-lib-requests常用类/方法/属性

    笔记-python-lib-requests常用类/方法/属性 1.      requests模块常用类/方法/属性 在使用中发现对requests模块不够熟悉,写了几个案例后重新整理了一下文档,罗 ...