Levenberg-Marquardt优化算法以及基于LM的BP-ANN
一.LM最优化算法
最优化是寻找使得目标函数有最大或最小值的的参数向量。根据求导数的方法,可分为2大类。(1)若f具有解析函数形式,知道x后求导数速度快。(2)使用数值差分来求导数。根据使用模型不同,分为非约束最优化、约束最优化、最小二乘最优化。Levenberg-Marquardt算法是最优化算法中的一种。
f 对待估参数向量p在其领域内做线性近似,利用泰勒展开,忽略掉二阶以上的导数项,优化目标方程转化为线性最小二乘问题)。它是利用梯度求最大(小)值的算法,形象的说,属于“爬山”法的一种。它同时具有梯度法和牛顿法的优点。当λ很小时,步长等于牛顿法步长,当λ很大时,步长约等于梯度下降法的步长。见下图:
LM算法属于一种“信赖域法”,所谓的信赖域法,就是从初始点开始,先假设一个可以信赖的最大位移σ,然后在以当前点为中心,以σ为半径的区域内,通过寻找目标函数的一个近似函数(二次的)的最优点,来求解得到真正的位移。在得到了位移之后,再计算目标函数值,如果其使目标函数值的下降满足了一定条件,那么就说明这个位移是可靠的,则继续按此规则迭代计算下去;如果其不能使目标函数值的下降满足一定的条件,则应减小信赖域的范围,再重新求解。
LM算法需要对每一个待估参数求偏导,所以,如果你的拟合函数 f 非常复杂,或者待估参数相当地多,那么可能不适合使用LM算法,而可以选择Powell算法(Powell算法不需要求导。LM收敛速度块。但是参数应该设定一个初值,其次对于多优化解的问题,也不是很适合。
英文文档lemar介绍比较简洁,还包括伪代码,请点击下载:
(1)Principle:
An iterative tech. to locate the minimum of a multivariate function (sum of squares of non-linear real-valued function).Assuming measure vector x’=f(p) ,target vector x
(such as training target in classification problem) ,error vector e=x-x’:
Optimization Object:arg(p) min(||x-f(p)||)
Linear approximation: in the neighborhood of p, assuming J
is Jacobian Matrix(f(p) to p) ,for a smallσ,so f(p+σ)=f(p)+σJ (Taylor Expansion)
,and
min (||x-f(p+σ)||=min(||e-Jσ||)
=> JTJσ=JTe (derivation to σ)
Introducing the damping term u and set
N=( JTJ+uI)=> Nσ=
JTe => σ
For each iteration or updata of p(p:=p+σ),
u is adjusted to assure a reduction in the error e(norm-2)
(2)Merits & Defects:LM is a standard tech. fornon-linear least-squares problems:When u is set to a large value, p updates as steepest descent,
otherwise updates as Gauss-Newton method.
p
shall be set toarelative reliable initial value (the work of RBM model).
Levenberg-Marquardt优化算法以及基于LM的BP-ANN的更多相关文章
- fastjson的deserializer的主要优化算法
JSON最佳实践 | kimmking's blog http://kimmking.github.io/2017/06/06/json-best-practice/ Fastjson内幕 Java综 ...
- fastjson的deserializer的主要优化算法 漏洞
JSON最佳实践 | kimmking's blog http://kimmking.github.io/2017/06/06/json-best-practice/ Fastjson内幕 Java综 ...
- 粒子群优化算法(PSO)之基于离散化的特征选择(FS)(二)
欢迎大家关注我们的网站和系列教程:http://www.tensorflownews.com/,学习更多的机器学习.深度学习的知识! 作者:Geppetto 前面我们介绍了特征选择(Feature S ...
- 粒子群优化算法(PSO)之基于离散化的特征选择(FS)(一)
欢迎大家关注我们的网站和系列教程:http://www.tensorflownews.com/,学习更多的机器学习.深度学习的知识! 作者:Geppetto 在机器学习中,离散化(Discretiza ...
- 基于网格的分割线优化算法(Level Set)
本文介绍一种网格分割线的优化算法,该方法能够找到网格上更精确.更光滑的分割位置,并且分割线能够自由地合并和分裂,下面介绍算法的具体原理和过程. 曲面上的曲线可以由水平集(level set)形式表示, ...
- [Algorithm] 群体智能优化算法之粒子群优化算法
同进化算法(见博客<[Evolutionary Algorithm] 进化算法简介>,进化算法是受生物进化机制启发而产生的一系列算法)和人工神经网络算法(Neural Networks,简 ...
- MOPSO 多目标例子群优化算法
近年来,基于启发式的多目标优化技术得到了很大的发展,研究表明该技术比经典方法更实用和高效.有代表性的多目标优化算法主要有NSGA.NSGA-II.SPEA.SPEA2.PAES和PESA等.粒子群优化 ...
- 优化算法-BFGS
优化算法-BFGS BGFS是一种准牛顿算法, 所谓的"准"是指牛顿算法会使用Hessian矩阵来进行优化, 但是直接计算Hessian矩阵比较麻烦, 所以很多算法会使用近似的He ...
- 常见优化算法统一框架下的实现:最速下降法,partan加速的最速下降法,共轭梯度法,牛顿法,拟牛顿法,黄金分割法,二次插值法
常见优化算法实现 这里实现的主要算法有: 一维搜索方法: 黄金分割法 二次差值法 多维搜索算法 最速下降法 partan加速的最速下降法 共轭梯度法 牛顿法 拟牛顿法 使用函数表示一个用于优化的目标, ...
随机推荐
- C#泛型命名潜规则
public class List<T>{} public class LinkedList<T>{} public class SortedList<TKey,TVal ...
- static_class
<?php class MyObject { public static $myStaticVar = 0; function myMethod() { self::$myStaticVar + ...
- Swift 闭包的简单学习
OC中已经学习了闭包 在swift里面 该怎么处理 不多说 上代码 //(num:Int) ->Bool是闭包的参数类型 func hasCloserMatch(arr :[Int], valu ...
- P4240 毒瘤之神的考验
题目 P4240 毒瘤之神的考验 神仙题\(emmm\) 前置 首先有一个很神奇的性质: \(\varphi(ij)=\dfrac{\varphi(i)\varphi(j)gcd(i,j)}{\var ...
- Maze迷宫问题(求最优解)
迷宫地形我们可以通过读文件的形式,通过已知入口逐个遍历坐标寻找通路. 文件如图: 每个坐标的位置用结构体来记录: struct Pos //位置坐标 { int _row; int _col; }; ...
- 《python基础教程(第二版)》学习笔记 字符串(第3章)
<python基础教程(第二版)>学习笔记 字符串(第3章)所有的基本的序列操作(索引,分片,乘法,判断成员资格,求长度,求最大最小值)对字符串也适用.字符串是不可以改变的:格式化输出字符 ...
- PHP中include路径的解决方法汇总
这几天整理一份很乱的代码,这才意识到php对include处理不是一般的贱:别的编程语言在处理include中的相对目录时,都是以当前处理的文件作为基准.也就是说,如果A包含B,B包含C时,C再包含一 ...
- 代码题(3)— 最小的k个数、数组中的第K个最大元素、前K个高频元素
1.题目:输入n个整数,找出其中最小的K个数. 例如输入4,5,1,6,2,7,3,8这8个数字,则最小的4个数字是1,2,3,4. 快排思路(掌握): class Solution { public ...
- vue2.0项目实战使用axios发送请求
在Vue1.0的时候有一个官方推荐的 ajax 插件 vue-resource,但是自从 Vue 更新到 2.0 之后,官方就不再更新 vue-resource. 关于为什么放弃推荐? -> 尤 ...
- InvalidOperationException: out of sync
C#中不能在集合的迭代中修改集合数据