HDU 5407——CRB and Candies——————【逆元+是素数次方的数+公式】
CRB and Candies
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 722 Accepted Submission(s): 361
He wonders how many combinations he can select.
Can you answer his question for all K(0 ≤ K ≤ N)?
CRB is too hungry to check all of your answers one by one, so he only asks least common multiple(LCM) of all answers.
1 ≤ T ≤ 300
1 ≤ N ≤ 106
2
3
4
5
题目大意:让你求LCM(C(n,0),C(n,1),C(n,2)...C(n,n-1),C(n,n)),最后结果取模。
解题思路:其实只要有公式了,问题就很好解决了。f(n)是求1 - n的最小公倍数。这个是可以借鉴得。如果n是一个素数p的k次方,那么就乘以素数p。主要需要求逆元,和快速判断x是否为素数p的k次方。
#include<bits/stdc++.h>
using namespace std;
typedef long long INT;
const int maxn=1e6+20;
const INT MOD=1e9+7;
INT f[maxn],g[maxn],inv[maxn];
int p[maxn];
void init(){
for(int i=1;i<maxn;i++){
p[i]=i;
}
for(int i=2;i<maxn;i++){
if(p[i]==i){
for(int j=i+i;j<maxn;j+=i){
p[j]=i;
}
}
}
}
bool check(int x){
int d=p[x];
if(x>1){
while(x%d==0){
x/=d;
}
return x==1;
}
return false;
}
void get_f(){
f[1]=1;
for(int i=2;i<maxn;i++){
if(check(i)){
f[i]=f[i-1]*p[i]%MOD;
}else{
f[i]=f[i-1];
}
}
}
INT Powmod(INT a,INT n){
a%=MOD;
INT ret=1;
while(n){
if(n&1)
ret= ret * a % MOD;
n>>=1;
a = (a*a)%MOD;
}
return ret;
}
INT get_inv(int n){
return Powmod((INT)n,MOD-2);
}
INT get_g(int n){
return f[n+1]*get_inv(n+1)%MOD;
}
int main(){
int t,n;
init();
get_f();
scanf("%d",&t);
while(t--){
scanf("%d",&n);
INT ans=get_g(n);
printf("%lld\n",ans);
}
return 0;
}
HDU 5407——CRB and Candies——————【逆元+是素数次方的数+公式】的更多相关文章
- Hdu 5407 CRB and Candies (找规律)
题目链接: Hdu 5407 CRB and Candies 题目描述: 给出一个数n,求lcm(C(n,0),C[n,1],C[n-2]......C[n][n-2],C[n][n-1],C[n][ ...
- 2015 Multi-University Training Contest 10 hdu 5407 CRB and Candies
CRB and Candies Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)T ...
- hdu 5407 CRB and Candies(组合数+最小公倍数+素数表+逆元)2015 Multi-University Training Contest 10
题意: 输入n,求c(n,0)到c(n,n)的所有组合数的最小公倍数. 输入: 首行输入整数t,表示共有t组测试样例. 每组测试样例包含一个正整数n(1<=n<=1e6). 输出: 输出结 ...
- HDU 5407 CRB and Candies(LCM +最大素因子求逆元)
[题目链接]pid=5407">click here~~ [题目大意]求LCM(Cn0,Cn1,Cn2....Cnn)%MOD 的值 [思路]来图更直观: 这个究竟是怎样推出的.说实话 ...
- LCM性质 + 组合数 - HDU 5407 CRB and Candies
CRB and Candies Problem's Link Mean: 给定一个数n,求LCM(C(n,0),C(n,1),C(n,2)...C(n,n))的值,(n<=1e6). analy ...
- HDU 5407 CRB and Candies
题意:给一个正整数k,求lcm((k, 0), (k, 1), ..., (k, k)) 解法:在oeis上查了这个序列,得知答案即为lcm(1, 2, ..., k + 1) / (k + 1),而 ...
- hdu 5407(LCM好题+逆元)
CRB and Candies Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)T ...
- 数论 HDOJ 5407 CRB and Candies
题目传送门 题意:求LCM (C(N,0),C(N,1),...,C(N,N)),LCM是最小公倍数的意思,C函数是组合数. 分析:先上出题人的解题报告 好吧,数论一点都不懂,只明白f (n + 1) ...
- HDU 5407(2015多校10)-CRB and Candies(组合数最小公倍数+乘法逆元)
题目地址:pid=5407">HDU 5407 题意:CRB有n颗不同的糖果,如今他要吃掉k颗(0<=k<=n),问k取0~n的方案数的最小公倍数是多少. 思路:首先做这道 ...
随机推荐
- Django之博客系统邮件分享博客
在上一章中,我们创建了一个基础的博客应用,我们能在http://127.0.0.1:8000/blog/显示我们的博客.在这一章我们将尝试给博客系统添加一些高级的特性,比如通过email来分享帖子,添 ...
- flink学习笔记-各种Time
说明:本文为<Flink大数据项目实战>学习笔记,想通过视频系统学习Flink这个最火爆的大数据计算框架的同学,推荐学习课程: Flink大数据项目实战:http://t.cn/EJtKh ...
- Luogu1829 JZPTAB
JZPTAB 求\(\sum_{i=1}^n\sum_{j=1}^mlcm(i,j)\) \(=\sum_{i=1}^n\sum_{j=1}^m\frac{ij}{\gcd(i,j)}\) 枚举gcd ...
- 14.链表中倒数第k个节点
题目描述: 输入一个链表,输出该链表中倒数第k个结点. 思路分析: 设置两个指针,一个fast一个slow,都从链表头开始,让fast先走k步,然后两个指针一起走,当fast走到尾部,那么sl ...
- kuangbin专题七 POJ3264 Balanced Lineup (线段树最大最小)
For the daily milking, Farmer John's N cows (1 ≤ N ≤ 50,000) always line up in the same order. One d ...
- NYOJ1238 最小换乘 (dijkstra)
最少换乘 时间限制:2000 ms | 内存限制:65535 KB 难度:3 描述 欧洲某城是一个著名的旅游胜地,每年都有成千上万的人前来观光旅行.Dr. Kong决定利用暑假好好游览一番.. ...
- mybatis组合实体查询
mybatis组合实体查询 <resultMap id="wxIndexMap" type="com.o2o.common.model.wxuntity.WxInd ...
- SpringMVC from 表单标签和 input 表单标签
刚学习很懵 不知道还有springmvc 自己的表单 于是乎就上网查了一下 这个真的好用多啦 刚学习很懵 不知道还有springmvc 自己的表单 于是乎就上网查了一下 这个真的好用多啦 ...
- pytorch contiguous的使用
contiguous一般与transpose,permute,view搭配使用 即使用transpose或permute进行维度变换后,调用contiguous,然后方可使用view对维度进行变形. ...
- P3225 [HNOI2012]矿场搭建
传送门 对于一个点双联通分量,如果它连接了两个或更多割点 那么不论哪个点GG都有至少一条路通到其他的点双联通分量,所以我们不用考虑 如果它只连接一个割点,如果这个割点GG,那整个块也一起GG,所以要再 ...