HDU 5407——CRB and Candies——————【逆元+是素数次方的数+公式】
CRB and Candies
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 722 Accepted Submission(s): 361
He wonders how many combinations he can select.
Can you answer his question for all K(0 ≤ K ≤ N)?
CRB is too hungry to check all of your answers one by one, so he only asks least common multiple(LCM) of all answers.
1 ≤ T ≤ 300
1 ≤ N ≤ 106
2
3
4
5
题目大意:让你求LCM(C(n,0),C(n,1),C(n,2)...C(n,n-1),C(n,n)),最后结果取模。
解题思路:其实只要有公式了,问题就很好解决了。f(n)是求1 - n的最小公倍数。这个是可以借鉴得。如果n是一个素数p的k次方,那么就乘以素数p。主要需要求逆元,和快速判断x是否为素数p的k次方。
#include<bits/stdc++.h>
using namespace std;
typedef long long INT;
const int maxn=1e6+20;
const INT MOD=1e9+7;
INT f[maxn],g[maxn],inv[maxn];
int p[maxn];
void init(){
for(int i=1;i<maxn;i++){
p[i]=i;
}
for(int i=2;i<maxn;i++){
if(p[i]==i){
for(int j=i+i;j<maxn;j+=i){
p[j]=i;
}
}
}
}
bool check(int x){
int d=p[x];
if(x>1){
while(x%d==0){
x/=d;
}
return x==1;
}
return false;
}
void get_f(){
f[1]=1;
for(int i=2;i<maxn;i++){
if(check(i)){
f[i]=f[i-1]*p[i]%MOD;
}else{
f[i]=f[i-1];
}
}
}
INT Powmod(INT a,INT n){
a%=MOD;
INT ret=1;
while(n){
if(n&1)
ret= ret * a % MOD;
n>>=1;
a = (a*a)%MOD;
}
return ret;
}
INT get_inv(int n){
return Powmod((INT)n,MOD-2);
}
INT get_g(int n){
return f[n+1]*get_inv(n+1)%MOD;
}
int main(){
int t,n;
init();
get_f();
scanf("%d",&t);
while(t--){
scanf("%d",&n);
INT ans=get_g(n);
printf("%lld\n",ans);
}
return 0;
}
HDU 5407——CRB and Candies——————【逆元+是素数次方的数+公式】的更多相关文章
- Hdu 5407 CRB and Candies (找规律)
题目链接: Hdu 5407 CRB and Candies 题目描述: 给出一个数n,求lcm(C(n,0),C[n,1],C[n-2]......C[n][n-2],C[n][n-1],C[n][ ...
- 2015 Multi-University Training Contest 10 hdu 5407 CRB and Candies
CRB and Candies Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)T ...
- hdu 5407 CRB and Candies(组合数+最小公倍数+素数表+逆元)2015 Multi-University Training Contest 10
题意: 输入n,求c(n,0)到c(n,n)的所有组合数的最小公倍数. 输入: 首行输入整数t,表示共有t组测试样例. 每组测试样例包含一个正整数n(1<=n<=1e6). 输出: 输出结 ...
- HDU 5407 CRB and Candies(LCM +最大素因子求逆元)
[题目链接]pid=5407">click here~~ [题目大意]求LCM(Cn0,Cn1,Cn2....Cnn)%MOD 的值 [思路]来图更直观: 这个究竟是怎样推出的.说实话 ...
- LCM性质 + 组合数 - HDU 5407 CRB and Candies
CRB and Candies Problem's Link Mean: 给定一个数n,求LCM(C(n,0),C(n,1),C(n,2)...C(n,n))的值,(n<=1e6). analy ...
- HDU 5407 CRB and Candies
题意:给一个正整数k,求lcm((k, 0), (k, 1), ..., (k, k)) 解法:在oeis上查了这个序列,得知答案即为lcm(1, 2, ..., k + 1) / (k + 1),而 ...
- hdu 5407(LCM好题+逆元)
CRB and Candies Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)T ...
- 数论 HDOJ 5407 CRB and Candies
题目传送门 题意:求LCM (C(N,0),C(N,1),...,C(N,N)),LCM是最小公倍数的意思,C函数是组合数. 分析:先上出题人的解题报告 好吧,数论一点都不懂,只明白f (n + 1) ...
- HDU 5407(2015多校10)-CRB and Candies(组合数最小公倍数+乘法逆元)
题目地址:pid=5407">HDU 5407 题意:CRB有n颗不同的糖果,如今他要吃掉k颗(0<=k<=n),问k取0~n的方案数的最小公倍数是多少. 思路:首先做这道 ...
随机推荐
- python3如何打印进度条
Python3 中打印进度条(#)信息: 代码: import sys,time for i in range(50): sys.stdout.write("#") sys.std ...
- [Emacs] Org-mode下表格内中英文不对齐的解决方案
;; Setting for English font (set-default-font "monospace-15") ;; Setting for Chinese font ...
- SpringMvc文件上传(内部框架版 配置无需考虑 只考虑上传部分)-
-此版本有一不足:自定义文件路径必须存在,不会自动创建 ,详看how2J
- Crontab 驱动 Scrapy 定时任务
做了个爬虫去定时抓自己发布在cnblogs更新的文章,考虑用corntab定时任务驱动 crontab 任务配置 crontab配置规则就不啰嗦了,网上很多介绍,规则很容易功能却很强大. 然后我发现只 ...
- sql_trace基本用法
sql_trace是oracle提供的一个非常好的跟踪工具,主要用来检查数据库的异常情况,通过跟踪数据库的活动,找到有问题的语句. 一.概述: SQL_TRACE是Oracle的一个非常强大的工 ...
- P3398 仓鼠找sugar 树上路径相交判断
\(\color{#0066ff}{题目描述}\) 小仓鼠的和他的基(mei)友(zi)sugar住在地下洞穴中,每个节点的编号为1~n.地下洞穴是一个树形结构.这一天小仓鼠打算从从他的卧室(a)到餐 ...
- Gym - 101845K 排序+概率
The UNAL programming coaches have lost a bet, they bet the 6 UNAL teams would occupy the first six p ...
- 禁止百度转码和百度快照缓存的META声明
今天手机 site 中国博客联盟时,发现网被转码了,虽然这个网站没做移动站,但是我也不希望被百度转码,因为这相当于拦截了所有来自手机的流量.下面说一下禁止百度转码和禁止百度快照缓存的方法. 一.禁止百 ...
- pytorch 迁移学习[摘自官网]
迁移学习包含两种:微调和特征提取器. 微调:对整个网络进行训练,更新所有参数 特征提取器:只对最后的输出层训练,其他层的权重保持不变 当然,二者的共性就是需要加载训练好的权重,比如在ImageNet上 ...
- 读经典——《CLR via C#》(Jeffrey Richter著) 笔记_类型的各种成员
[Class中,可能包含的成员] 常量, 字段, 实例构造器, 类型构造器, 方法, 操作符重载, 转换操作符, 属性, 事件, 类型(Class)