pid=2767">http://acm.hdu.edu.cn/showproblem.php?pid=2767

Proving Equivalences

Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)

Total Submission(s): 2926    Accepted Submission(s): 1100

Problem Description
Consider the following exercise, found in a generic linear algebra textbook.



Let A be an n × n matrix. Prove that the following statements are equivalent:



1. A is invertible.

2. Ax = b has exactly one solution for every n × 1 matrix b.

3. Ax = b is consistent for every n × 1 matrix b.

4. Ax = 0 has only the trivial solution x = 0. 



The typical way to solve such an exercise is to show a series of implications. For instance, one can proceed by showing that (a) implies (b), that (b) implies (c), that (c) implies (d), and finally that (d) implies (a). These four implications show that the
four statements are equivalent.



Another way would be to show that (a) is equivalent to (b) (by proving that (a) implies (b) and that (b) implies (a)), that (b) is equivalent to (c), and that (c) is equivalent to (d). However, this way requires proving six implications, which is clearly a
lot more work than just proving four implications!



I have been given some similar tasks, and have already started proving some implications. Now I wonder, how many more implications do I have to prove? Can you help me determine this?

 
Input
On the first line one positive number: the number of testcases, at most 100. After that per testcase:



* One line containing two integers n (1 ≤ n ≤ 20000) and m (0 ≤ m ≤ 50000): the number of statements and the number of implications that have already been proved.

* m lines with two integers s1 and s2 (1 ≤ s1, s2 ≤ n and s1 ≠ s2) each, indicating that it has been proved that statement s1 implies statement s2.
 
Output
Per testcase:



* One line with the minimum number of additional implications that need to be proved in order to prove that all statements are equivalent.
 
Sample Input
  1. 2
  2. 4 0
  3. 3 2
  4. 1 2
  5. 1 3
 
Sample Output
  1. 4
  2. 2
 
Source
 

题意:

要证明等价性(要求全部命题都是等价的),现已给出部分证明(u->v),问最少还需多少步才干完毕目标。

分析:

我们的目标是(没有蛀牙)使得整个图是强联通的,已经有部分有向边u->v。我们先用强联通缩点,得到一个有向无环图,设入度为0的点有a个,出度为0的点有b个。我们仅仅要max(a,b)步就能完毕目标(数学归纳法可证)。

  1. #include<cstdio>
  2. #include<iostream>
  3. #include<cstdlib>
  4. #include<algorithm>
  5. #include<ctime>
  6. #include<cctype>
  7. #include<cmath>
  8. #include<string>
  9. #include<cstring>
  10. #include<stack>
  11. #include<queue>
  12. #include<list>
  13. #include<vector>
  14. #include<map>
  15. #include<set>
  16. #define sqr(x) ((x)*(x))
  17. #define LL long long
  18. #define itn int
  19. #define INF 0x3f3f3f3f
  20. #define PI 3.1415926535897932384626
  21. #define eps 1e-10
  22. #define maxm 50000
  23. #define maxn 20007
  24.  
  25. using namespace std;
  26.  
  27. int in[maxn],out[maxn];
  28. int fir[maxn];
  29. int u[maxm],v[maxm],nex[maxm];
  30. int sccno[maxn],pre[maxn],low[maxn];
  31. int st[maxn],top;
  32. int scc_cnt,dfs_clock;
  33. int n,m;
  34.  
  35. void tarjan_dfs(int _u)
  36. {
  37. pre[_u]=low[_u]=++dfs_clock;
  38. st[++top]=_u;
  39. for (int e=fir[_u];~e;e=nex[e])
  40. {
  41. int _v=v[e];
  42. if (!pre[_v])
  43. {
  44. tarjan_dfs(_v);
  45. low[_u]=min(low[_u],low[_v]);
  46. }
  47. else
  48. {
  49. if (!sccno[_v])
  50. {
  51. low[_u]=min(low[_u],pre[_v]);
  52. }
  53. }
  54. }
  55.  
  56. if (pre[_u]==low[_u])
  57. {
  58. ++scc_cnt;
  59. while (true)
  60. {
  61. int x=st[top--];
  62. sccno[x]=scc_cnt;
  63. if (x==_u) break;
  64. }
  65. }
  66. }
  67.  
  68. void find_scc()
  69. {
  70. scc_cnt=dfs_clock=0;top=-1;
  71. memset(pre,0,sizeof pre);
  72. memset(sccno,0,sizeof sccno);
  73. for (int i=1;i<=n;i++)
  74. {
  75. if (!pre[i]) tarjan_dfs(i);
  76. }
  77. }
  78.  
  79. int main()
  80. {
  81. #ifndef ONLINE_JUDGE
  82. freopen("/home/fcbruce/文档/code/t","r",stdin);
  83. #endif // ONLINE_JUDGE
  84.  
  85. int T_T;
  86. scanf("%d",&T_T);
  87. while (T_T--)
  88. {
  89.  
  90. scanf("%d %d",&n,&m);
  91. memset(fir,-1,sizeof fir);
  92. for (itn i=0;i<m;i++)
  93. {
  94. scanf("%d %d",&u[i],&v[i]);
  95. nex[i]=fir[u[i]];
  96. fir[u[i]]=i;
  97. }
  98.  
  99. find_scc();
  100.  
  101. if (scc_cnt==1)
  102. {
  103. printf("%d\n",0);
  104. continue;
  105. }
  106.  
  107. memset(in,0,sizeof in);
  108. memset(out,0,sizeof out);
  109. for (int i=0;i<m;i++)
  110. {
  111. if (sccno[u[i]]==sccno[v[i]]) continue;
  112.  
  113. in[sccno[v[i]]]++;
  114. out[sccno[u[i]]]++;
  115. }
  116.  
  117. int a=0,b=0;
  118. for (itn i=1;i<=scc_cnt;i++)
  119. {
  120. if (in[i]==0) a++;
  121. if (out[i]==0) b++;
  122. }
  123.  
  124. printf("%d\n",max(a,b));
  125. }
  126.  
  127. return 0;
  128. }

HDU 2767 Proving Equivalences (强联通)的更多相关文章

  1. HDU 2767 Proving Equivalences(强连通 Tarjan+缩点)

    Consider the following exercise, found in a generic linear algebra textbook. Let A be an n × n matri ...

  2. hdu 2767 Proving Equivalences

    Proving Equivalences 题意:输入一个有向图(强连通图就是定义在有向图上的),有n(1 ≤ n ≤ 20000)个节点和m(0 ≤ m ≤ 50000)条有向边:问添加几条边可使图变 ...

  3. HDU 2767 Proving Equivalences(至少增加多少条边使得有向图变成强连通图)

    Proving Equivalences Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Oth ...

  4. HDU 2767 Proving Equivalences (Tarjan)

    Proving Equivalences Time Limit : 4000/2000ms (Java/Other)   Memory Limit : 32768/32768K (Java/Other ...

  5. hdu 2767 Proving Equivalences(tarjan缩点)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2767 题意:问最少加多少边可以让所有点都相互连通. 题解:如果强连通分量就1个直接输出0,否者输出入度 ...

  6. hdu 2767 Proving Equivalences 强连通缩点

    给出n个命题,m个推导,问最少添加多少条推导,能够使全部命题都能等价(两两都能互推) 既给出有向图,最少加多少边,使得原图变成强连通. 首先强连通缩点,对于新图,每一个点都至少要有一条出去的边和一条进 ...

  7. HDU 2767:Proving Equivalences(强连通)

    题意: 一个有向图,问最少加几条边,能让它强连通 方法: 1:tarjan 缩点 2:采用如下构造法: 缩点后的图找到所有头结点和尾结点,那么,可以这么构造:把所有的尾结点连一条边到头结点,就必然可以 ...

  8. HDU 2767-Proving Equivalences(强联通+缩点)

    题目地址:pid=2767">HDU 2767 题意:给一张有向图.求最少加几条边使这个图强连通. 思路:先求这张图的强连通分量.假设为1.则输出0(证明该图不须要加边已经是强连通的了 ...

  9. hdoj 2767 Proving Equivalences【求scc&&缩点】【求最少添加多少条边使这个图成为一个scc】

    Proving Equivalences Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Oth ...

随机推荐

  1. Scaffold your ASP.NET MVC 3 project with the MvcScaffolding package

    原文发布时间为:2011-05-21 -- 来源于本人的百度文章 [由搬家工具导入] http://blog.stevensanderson.com/2011/01/13/scaffold-your- ...

  2. 限制MYSQL从服务器为只读状态

    修改全局变量的方法有两种,第一种是修改配置文件,第二种是SQL语句设置全局变量的值.(可以参考:http://www.cnblogs.com/qlqwjy/p/8046592.html) 0.简介: ...

  3. 【原创】Talend ETL Job日志框架——基于P&G项目的一些思考和优化

    一.背景 接触talend也挺长一段时间了,在P&G项目中每天都是使用它开发job,做ETL,也看了前辈开发的很多ETL Job,学到不少.也接触了TAC(talend administrat ...

  4. MSSQL—字符串分离(Split函数)

    前面提到了记录合并,有了合并需求肯定也会有分离需求,说到字符串分离,大家肯定会想到SPLIT函数,这个在.NET,Java和JS中都有函数,很可惜在SQL SERVER中没有,我们只能自己来写这么一个 ...

  5. codevs——1553 互斥的数

    时间限制: 1 s 空间限制: 128000 KB 题目等级 : 黄金 Gold 题解     题目描述 Description 有这样的一个集合,集合中的元素个数由给定的N决定,集合的元素为N个不同 ...

  6. LA 3713 Astronauts

    给个题目链接: https://icpcarchive.ecs.baylor.edu/index.php?option=com_onlinejudge&Itemid=8&page=sh ...

  7. [Contest20180418]数学竞赛

    题意:初始时$x=0$(长度),当$x$为长度时,你可以把$x$变成$\sin^{-1}x,\cos^{-1}x,\tan^{-1}x$之一($x$变为角度),若$x$为角度,你可以把$x$变成$\s ...

  8. 【bzoj1085】【 [SCOI2005]骑士精神】启发式剪枝+迭代加深搜索

    (上不了p站我要死了,侵权度娘背锅) 如果这就是启发式搜索的话,那启发式搜索也不是什么高级玩意嘛..(啪啪打脸) Description 在一个5×5的棋盘上有12个白色的骑士和12个黑色的骑士, 且 ...

  9. lua中self.__index = self是什么意思?

    example1 Account = {balance = 0} function Account:new(conf) conf = conf or {} setmetatable(conf,self ...

  10. List集合-保存和输出宠物信息

    package collection; /** * 宠物类 * @author * */ public class Pet { private String name; private String ...