pid=2767">http://acm.hdu.edu.cn/showproblem.php?pid=2767

Proving Equivalences

Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)

Total Submission(s): 2926    Accepted Submission(s): 1100

Problem Description
Consider the following exercise, found in a generic linear algebra textbook.



Let A be an n × n matrix. Prove that the following statements are equivalent:



1. A is invertible.

2. Ax = b has exactly one solution for every n × 1 matrix b.

3. Ax = b is consistent for every n × 1 matrix b.

4. Ax = 0 has only the trivial solution x = 0. 



The typical way to solve such an exercise is to show a series of implications. For instance, one can proceed by showing that (a) implies (b), that (b) implies (c), that (c) implies (d), and finally that (d) implies (a). These four implications show that the
four statements are equivalent.



Another way would be to show that (a) is equivalent to (b) (by proving that (a) implies (b) and that (b) implies (a)), that (b) is equivalent to (c), and that (c) is equivalent to (d). However, this way requires proving six implications, which is clearly a
lot more work than just proving four implications!



I have been given some similar tasks, and have already started proving some implications. Now I wonder, how many more implications do I have to prove? Can you help me determine this?

 
Input
On the first line one positive number: the number of testcases, at most 100. After that per testcase:



* One line containing two integers n (1 ≤ n ≤ 20000) and m (0 ≤ m ≤ 50000): the number of statements and the number of implications that have already been proved.

* m lines with two integers s1 and s2 (1 ≤ s1, s2 ≤ n and s1 ≠ s2) each, indicating that it has been proved that statement s1 implies statement s2.
 
Output
Per testcase:



* One line with the minimum number of additional implications that need to be proved in order to prove that all statements are equivalent.
 
Sample Input
2
4 0
3 2
1 2
1 3
 
Sample Output
4
2
 
Source
 

题意:

要证明等价性(要求全部命题都是等价的),现已给出部分证明(u->v),问最少还需多少步才干完毕目标。

分析:

我们的目标是(没有蛀牙)使得整个图是强联通的,已经有部分有向边u->v。我们先用强联通缩点,得到一个有向无环图,设入度为0的点有a个,出度为0的点有b个。我们仅仅要max(a,b)步就能完毕目标(数学归纳法可证)。

#include<cstdio>
#include<iostream>
#include<cstdlib>
#include<algorithm>
#include<ctime>
#include<cctype>
#include<cmath>
#include<string>
#include<cstring>
#include<stack>
#include<queue>
#include<list>
#include<vector>
#include<map>
#include<set>
#define sqr(x) ((x)*(x))
#define LL long long
#define itn int
#define INF 0x3f3f3f3f
#define PI 3.1415926535897932384626
#define eps 1e-10
#define maxm 50000
#define maxn 20007 using namespace std; int in[maxn],out[maxn];
int fir[maxn];
int u[maxm],v[maxm],nex[maxm];
int sccno[maxn],pre[maxn],low[maxn];
int st[maxn],top;
int scc_cnt,dfs_clock;
int n,m; void tarjan_dfs(int _u)
{
pre[_u]=low[_u]=++dfs_clock;
st[++top]=_u;
for (int e=fir[_u];~e;e=nex[e])
{
int _v=v[e];
if (!pre[_v])
{
tarjan_dfs(_v);
low[_u]=min(low[_u],low[_v]);
}
else
{
if (!sccno[_v])
{
low[_u]=min(low[_u],pre[_v]);
}
}
} if (pre[_u]==low[_u])
{
++scc_cnt;
while (true)
{
int x=st[top--];
sccno[x]=scc_cnt;
if (x==_u) break;
}
}
} void find_scc()
{
scc_cnt=dfs_clock=0;top=-1;
memset(pre,0,sizeof pre);
memset(sccno,0,sizeof sccno);
for (int i=1;i<=n;i++)
{
if (!pre[i]) tarjan_dfs(i);
}
} int main()
{
#ifndef ONLINE_JUDGE
freopen("/home/fcbruce/文档/code/t","r",stdin);
#endif // ONLINE_JUDGE int T_T;
scanf("%d",&T_T);
while (T_T--)
{ scanf("%d %d",&n,&m);
memset(fir,-1,sizeof fir);
for (itn i=0;i<m;i++)
{
scanf("%d %d",&u[i],&v[i]);
nex[i]=fir[u[i]];
fir[u[i]]=i;
} find_scc(); if (scc_cnt==1)
{
printf("%d\n",0);
continue;
} memset(in,0,sizeof in);
memset(out,0,sizeof out);
for (int i=0;i<m;i++)
{
if (sccno[u[i]]==sccno[v[i]]) continue; in[sccno[v[i]]]++;
out[sccno[u[i]]]++;
} int a=0,b=0;
for (itn i=1;i<=scc_cnt;i++)
{
if (in[i]==0) a++;
if (out[i]==0) b++;
} printf("%d\n",max(a,b));
} return 0;
}

HDU 2767 Proving Equivalences (强联通)的更多相关文章

  1. HDU 2767 Proving Equivalences(强连通 Tarjan+缩点)

    Consider the following exercise, found in a generic linear algebra textbook. Let A be an n × n matri ...

  2. hdu 2767 Proving Equivalences

    Proving Equivalences 题意:输入一个有向图(强连通图就是定义在有向图上的),有n(1 ≤ n ≤ 20000)个节点和m(0 ≤ m ≤ 50000)条有向边:问添加几条边可使图变 ...

  3. HDU 2767 Proving Equivalences(至少增加多少条边使得有向图变成强连通图)

    Proving Equivalences Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Oth ...

  4. HDU 2767 Proving Equivalences (Tarjan)

    Proving Equivalences Time Limit : 4000/2000ms (Java/Other)   Memory Limit : 32768/32768K (Java/Other ...

  5. hdu 2767 Proving Equivalences(tarjan缩点)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2767 题意:问最少加多少边可以让所有点都相互连通. 题解:如果强连通分量就1个直接输出0,否者输出入度 ...

  6. hdu 2767 Proving Equivalences 强连通缩点

    给出n个命题,m个推导,问最少添加多少条推导,能够使全部命题都能等价(两两都能互推) 既给出有向图,最少加多少边,使得原图变成强连通. 首先强连通缩点,对于新图,每一个点都至少要有一条出去的边和一条进 ...

  7. HDU 2767:Proving Equivalences(强连通)

    题意: 一个有向图,问最少加几条边,能让它强连通 方法: 1:tarjan 缩点 2:采用如下构造法: 缩点后的图找到所有头结点和尾结点,那么,可以这么构造:把所有的尾结点连一条边到头结点,就必然可以 ...

  8. HDU 2767-Proving Equivalences(强联通+缩点)

    题目地址:pid=2767">HDU 2767 题意:给一张有向图.求最少加几条边使这个图强连通. 思路:先求这张图的强连通分量.假设为1.则输出0(证明该图不须要加边已经是强连通的了 ...

  9. hdoj 2767 Proving Equivalences【求scc&&缩点】【求最少添加多少条边使这个图成为一个scc】

    Proving Equivalences Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Oth ...

随机推荐

  1. Educational Codeforces Round 42 (Rated for Div. 2) C

    C. Make a Square time limit per test 2 seconds memory limit per test 256 megabytes input standard in ...

  2. Linux命令之time

    我使用过的Linux命令之time - 测定一个命令的资源使用情况 本文链接:http://codingstandards.iteye.com/blog/798788   (转载请注明出处) 用途说明 ...

  3. Tomcat的context.xml说明、Context标签讲解

    Tomcat的context.xml说明.Context标签讲解 1. 在tomcat 5.5之前 --------------------------- Context体现在/conf/server ...

  4. ACdream 1210 Chinese Girls' Amusement(高精度)

     Chinese Girls' Amusement Time Limit:1000MS     Memory Limit:64000KB     64bit IO Format:%lld & ...

  5. Selenium2设置隐式等待和显示等待

    1. 设置显示等待 Java代码: public static WebElement WaitForElement(WebDriver driver, String locator) { WebEle ...

  6. Kali安装到移动硬盘或者U盘中~Linux系通用方法(包括Android)

    0.1.保证这个服务必须启动(虚拟机服务最好都启动) 0.2.看看U盘接口类型是否对应 1.安装第一步 2.安装第二步,选择kali镜像 3.设置存放位置(上面的名字无所谓,最后不会用它的,虚拟机只是 ...

  7. 委托delegate与Dictionary实现action选择器

    大家一定都有这种情况,1.前台页面信息是通过Ajax请求的方法加载的;2.或者是通过请求本页面加载的;3.请求的页面不仅仅是一个Http请求在 这咱情况下我们一般会加一个action的参数,用于区别是 ...

  8. Python基础-迭代器&生成器&装饰器

    本节内容 迭代器&生成器 装饰器 Json & pickle 数据序列化 软件目录结构规范 作业:ATM项目开发 1.列表生成式,迭代器&生成器 列表生成式 我现在有个需求,看 ...

  9. hdu 5159(概率)

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5159 题解:假设在 x 张牌中选b张牌,那么有 x^b 种选法,如果在 (x-1) 张牌中选 b 张 ...

  10. Codeforces 832 B. Petya and Exam-字符串匹配

    补的若干年以前的题目,水题,太菜啦_(:з」∠)_    B. Petya and Exam   time limit per test 2 seconds memory limit per test ...