HDU 2767 Proving Equivalences (强联通)
pid=2767">http://acm.hdu.edu.cn/showproblem.php?pid=2767
Proving Equivalences
Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 2926 Accepted Submission(s): 1100
Let A be an n × n matrix. Prove that the following statements are equivalent:
1. A is invertible.
2. Ax = b has exactly one solution for every n × 1 matrix b.
3. Ax = b is consistent for every n × 1 matrix b.
4. Ax = 0 has only the trivial solution x = 0.
The typical way to solve such an exercise is to show a series of implications. For instance, one can proceed by showing that (a) implies (b), that (b) implies (c), that (c) implies (d), and finally that (d) implies (a). These four implications show that the
four statements are equivalent.
Another way would be to show that (a) is equivalent to (b) (by proving that (a) implies (b) and that (b) implies (a)), that (b) is equivalent to (c), and that (c) is equivalent to (d). However, this way requires proving six implications, which is clearly a
lot more work than just proving four implications!
I have been given some similar tasks, and have already started proving some implications. Now I wonder, how many more implications do I have to prove? Can you help me determine this?
* One line containing two integers n (1 ≤ n ≤ 20000) and m (0 ≤ m ≤ 50000): the number of statements and the number of implications that have already been proved.
* m lines with two integers s1 and s2 (1 ≤ s1, s2 ≤ n and s1 ≠ s2) each, indicating that it has been proved that statement s1 implies statement s2.
* One line with the minimum number of additional implications that need to be proved in order to prove that all statements are equivalent.
2
4 0
3 2
1 2
1 3
4
2
题意:
要证明等价性(要求全部命题都是等价的),现已给出部分证明(u->v),问最少还需多少步才干完毕目标。
分析:
我们的目标是(没有蛀牙)使得整个图是强联通的,已经有部分有向边u->v。我们先用强联通缩点,得到一个有向无环图,设入度为0的点有a个,出度为0的点有b个。我们仅仅要max(a,b)步就能完毕目标(数学归纳法可证)。
#include<cstdio>
#include<iostream>
#include<cstdlib>
#include<algorithm>
#include<ctime>
#include<cctype>
#include<cmath>
#include<string>
#include<cstring>
#include<stack>
#include<queue>
#include<list>
#include<vector>
#include<map>
#include<set>
#define sqr(x) ((x)*(x))
#define LL long long
#define itn int
#define INF 0x3f3f3f3f
#define PI 3.1415926535897932384626
#define eps 1e-10
#define maxm 50000
#define maxn 20007 using namespace std; int in[maxn],out[maxn];
int fir[maxn];
int u[maxm],v[maxm],nex[maxm];
int sccno[maxn],pre[maxn],low[maxn];
int st[maxn],top;
int scc_cnt,dfs_clock;
int n,m; void tarjan_dfs(int _u)
{
pre[_u]=low[_u]=++dfs_clock;
st[++top]=_u;
for (int e=fir[_u];~e;e=nex[e])
{
int _v=v[e];
if (!pre[_v])
{
tarjan_dfs(_v);
low[_u]=min(low[_u],low[_v]);
}
else
{
if (!sccno[_v])
{
low[_u]=min(low[_u],pre[_v]);
}
}
} if (pre[_u]==low[_u])
{
++scc_cnt;
while (true)
{
int x=st[top--];
sccno[x]=scc_cnt;
if (x==_u) break;
}
}
} void find_scc()
{
scc_cnt=dfs_clock=0;top=-1;
memset(pre,0,sizeof pre);
memset(sccno,0,sizeof sccno);
for (int i=1;i<=n;i++)
{
if (!pre[i]) tarjan_dfs(i);
}
} int main()
{
#ifndef ONLINE_JUDGE
freopen("/home/fcbruce/文档/code/t","r",stdin);
#endif // ONLINE_JUDGE int T_T;
scanf("%d",&T_T);
while (T_T--)
{ scanf("%d %d",&n,&m);
memset(fir,-1,sizeof fir);
for (itn i=0;i<m;i++)
{
scanf("%d %d",&u[i],&v[i]);
nex[i]=fir[u[i]];
fir[u[i]]=i;
} find_scc(); if (scc_cnt==1)
{
printf("%d\n",0);
continue;
} memset(in,0,sizeof in);
memset(out,0,sizeof out);
for (int i=0;i<m;i++)
{
if (sccno[u[i]]==sccno[v[i]]) continue; in[sccno[v[i]]]++;
out[sccno[u[i]]]++;
} int a=0,b=0;
for (itn i=1;i<=scc_cnt;i++)
{
if (in[i]==0) a++;
if (out[i]==0) b++;
} printf("%d\n",max(a,b));
} return 0;
}
HDU 2767 Proving Equivalences (强联通)的更多相关文章
- HDU 2767 Proving Equivalences(强连通 Tarjan+缩点)
Consider the following exercise, found in a generic linear algebra textbook. Let A be an n × n matri ...
- hdu 2767 Proving Equivalences
Proving Equivalences 题意:输入一个有向图(强连通图就是定义在有向图上的),有n(1 ≤ n ≤ 20000)个节点和m(0 ≤ m ≤ 50000)条有向边:问添加几条边可使图变 ...
- HDU 2767 Proving Equivalences(至少增加多少条边使得有向图变成强连通图)
Proving Equivalences Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Oth ...
- HDU 2767 Proving Equivalences (Tarjan)
Proving Equivalences Time Limit : 4000/2000ms (Java/Other) Memory Limit : 32768/32768K (Java/Other ...
- hdu 2767 Proving Equivalences(tarjan缩点)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2767 题意:问最少加多少边可以让所有点都相互连通. 题解:如果强连通分量就1个直接输出0,否者输出入度 ...
- hdu 2767 Proving Equivalences 强连通缩点
给出n个命题,m个推导,问最少添加多少条推导,能够使全部命题都能等价(两两都能互推) 既给出有向图,最少加多少边,使得原图变成强连通. 首先强连通缩点,对于新图,每一个点都至少要有一条出去的边和一条进 ...
- HDU 2767:Proving Equivalences(强连通)
题意: 一个有向图,问最少加几条边,能让它强连通 方法: 1:tarjan 缩点 2:采用如下构造法: 缩点后的图找到所有头结点和尾结点,那么,可以这么构造:把所有的尾结点连一条边到头结点,就必然可以 ...
- HDU 2767-Proving Equivalences(强联通+缩点)
题目地址:pid=2767">HDU 2767 题意:给一张有向图.求最少加几条边使这个图强连通. 思路:先求这张图的强连通分量.假设为1.则输出0(证明该图不须要加边已经是强连通的了 ...
- hdoj 2767 Proving Equivalences【求scc&&缩点】【求最少添加多少条边使这个图成为一个scc】
Proving Equivalences Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Oth ...
随机推荐
- hihoCoder 1015KMP
#include <iostream> #include <algorithm> #include <stdio.h> #include <math.h> ...
- WPF的webBrowser控件关键代码
1.根据元素ID获取元素的值. 比如要获取<img class="" id="regimg" src="/register/checkregco ...
- 手一抖误删了根目录 /usr 之后的挽救过程
一切悲剧来源于写的Shell没有好好检查,执行后把开发机的根目录 /usr 目录给删除了,而且是root执行,众所周知,/usr目录里有大量的应用层程序,删除之后导致大量命令无法使用,如 ssh / ...
- [Oracle] Setup DataGuard
Oracle一步步搭建DataGuard DataGuard环境: OS: SuSe 10 Primary DB: IP address:1.1.1.1 user:root passwd:****** ...
- git使用教程2-更新github上代码【转载】
本篇转自博客:上海-悠悠 原文地址:http://www.cnblogs.com/yoyoketang/tag/git/ 前言 前面一篇已经实现首次上传代码到github了,迈出了装逼第一步,本篇继续 ...
- hdu 5125(LIS变形)
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5125 题解: 这个题dp[i][0],dp[i][1]数组分别记录在第i个位置取a[i]和b[i]时 ...
- 配置OpenResty支持SSL(不受信任的证书)
#关闭防火墙 chkconfig iptables off service iptables stop #关闭SELINUX sed -i 's/SELINUX=enforcing/SELINUX=d ...
- 51nod 算法马拉松 34 Problem D 区间求和2 (FFT加速卷积)
题目链接 51nod 算法马拉松 34 Problem D 在这个题中$2$这个质数比较特殊,所以我们先特判$2$的情况,然后仅考虑大于等于$3$的奇数即可. 首先考虑任意一个点对$(i, j)$ ...
- HttpRunner 接口自动化测试进阶
前面说到了httprunner的安装与简单使用,参见: https://www.cnblogs.com/chengtch/p/8735160.html 这里我们介绍一下通过调试源码的方式来做接口测试: ...
- KMP【UVA1328】 Period
Description 如果一个字符串S是由一个字符串T重复K次形成的,则称T是S的循环节.使K最大的字符串T称为S的最小循环节,此时的K称为最大循环次数. 现给一个给定长度为N的字符串S,对S的每一 ...