题目大意:
  用$n$条线段覆盖区间$[1,t]$上的整点。每条线段有4个属性$(S_i,T_i,A_i,B_i)$,表示用第$i$条线段可以覆盖区间$[S_i,T_i]$。若选取线段的集合为$S$,最后总代价为$\frac{\sum_{i\in S}A_i}{\sum_{i\in S}B_i}$。问区间$[1,t]$全部覆盖时,最小代价为多少?

思路:
  分数规划经典模型。
  二分答案$k$,表示代价为$k$。若$k$为可行的,则我代价们需要找到一个合法的$S$,满足$\frac{\sum_{i\in S}A_i}{\sum_{i\in S}B_i}\leq k$。移项得$\sum_{i\in S}(A_ik-B_i)\geq 0$。
  可以将所有线段按照左端点排序,然后考虑每个线段对答案的贡献。
  若$A_ik-B_i\geq 0$,则选了这个线段肯定能够让答案尽可能大于$0$,因此把它选上。
  如果把所有$A_ik-B_i\geq 0$的线段选上后能够覆盖完整个区间,那么$k$为可行的代价。
  如果不能覆盖完,那么我们要考虑选上一些$A_ik-B_i<0$的线段,使得代价增加最少的情况下,能把区间覆盖完。
  若用$sum$表示必选线段$A_ik-B_i$的和,$f_i$表示覆盖完$i$点后,$sum$要减少的值。那么对于必选线段$i$,$f_{r_i}=\min\{f_j\mid S_i\leq j\leq t\}$(选了以后并不会影响$sum$),对于其它线段,$f_{r_i}=\min\{f_j|S_i\leq j\leq t\}+B_i-A_ik$。由于$f_{r_i}$,可能会被计算多次,因此取最小值即可。转移的时候相当于后缀最小值,显然可以使用树状数组优化。最后只需要判断$sum-f_t\geq 0$即可。

 #include<cstdio>
#include<cctype>
#include<algorithm>
inline int getint() {
register char ch;
while(!isdigit(ch=getchar()));
register int x=ch^'';
while(isdigit(ch=getchar())) x=(((x<<)+x)<<)+(ch^'');
return x;
}
const int N=;
const double eps=1e-,inf=1e10;
struct Node {
int l,r,w,a;
bool operator < (const Node &another) const {
return l<another.l||(l==another.l&&r<another.r);
}
};
Node node[N];
int n,m;
struct SuffixFenwickTree {
double val[N];
int lowbit(const int &x) const {
return x&-x;
}
void reset() {
for(register int i=;i<=m;i++) {
val[i]=-inf;
}
}
void modify(int p,const double &x) {
while(p) {
val[p]=std::max(val[p],x);
p-=lowbit(p);
}
}
double query(int p) const {
if(!p) return ;
double ret=-inf;
while(p<=m) {
ret=std::max(ret,val[p]);
p+=lowbit(p);
}
return ret;
}
};
SuffixFenwickTree t;
inline bool check(const double &k) {
t.reset();
int last=;
for(register int i=;i<=n;i++) {
if(node[i].a*k-node[i].w<) continue;
if(node[i].l-<=last) last=std::max(last,node[i].r);
}
if(last>=m) return true;
double sum=;
t.modify(last,);
for(register int i=;i<=n;i++) {
if(node[i].a*k-node[i].w<) {
t.modify(node[i].r,t.query(node[i].l-)+node[i].a*k-node[i].w);
} else {
sum+=node[i].a*k-node[i].w;
t.modify(node[i].r,t.query(node[i].l-));
}
}
return sum+t.query(m)>=;
}
int main() {
for(register int T=getint();T;T--) {
n=getint(),m=getint();
int sumw=,suma=;
for(register int i=;i<=n;i++) {
const int l=getint(),r=getint(),w=getint(),a=getint();
sumw+=w,suma+=a;
node[i]=(Node){l,r,w,a};
}
std::sort(&node[],&node[n+]);
double l=,r=sumw*./suma;
while(r-l>=eps) {
const double mid=(l+r)/;
(check(mid)?r:l)=mid;
}
printf("%.3f\n",r);
}
return ;
}

[HDU6240]Server的更多相关文章

  1. 最近帮客户实施的基于SQL Server AlwaysOn跨机房切换项目

    最近帮客户实施的基于SQL Server AlwaysOn跨机房切换项目 最近一个来自重庆的客户找到走起君,客户的业务是做移动互联网支付,是微信支付收单渠道合作伙伴,数据库里存储的是支付流水和交易流水 ...

  2. SQL Server 大数据搬迁之文件组备份还原实战

    一.本文所涉及的内容(Contents) 本文所涉及的内容(Contents) 背景(Contexts) 解决方案(Solution) 搬迁步骤(Procedure) 搬迁脚本(SQL Codes) ...

  3. Sql Server系列:分区表操作

    1. 分区表简介 分区表在逻辑上是一个表,而物理上是多个表.从用户角度来看,分区表和普通表是一样的.使用分区表的主要目的是为改善大型表以及具有多个访问模式的表的可伸缩性和可管理性. 分区表是把数据按设 ...

  4. SQL Server中的高可用性(2)----文件与文件组

        在谈到SQL Server的高可用性之前,我们首先要谈一谈单实例的高可用性.在单实例的高可用性中,不可忽略的就是文件和文件组的高可用性.SQL Server允许在某些文件损坏或离线的情况下,允 ...

  5. 从0开始搭建SQL Server AlwaysOn 第一篇(配置域控)

    从0开始搭建SQL Server AlwaysOn 第一篇(配置域控) 第一篇http://www.cnblogs.com/lyhabc/p/4678330.html第二篇http://www.cnb ...

  6. 从0开始搭建SQL Server AlwaysOn 第二篇(配置故障转移集群)

    从0开始搭建SQL Server AlwaysOn 第二篇(配置故障转移集群) 第一篇http://www.cnblogs.com/lyhabc/p/4678330.html第二篇http://www ...

  7. 从0开始搭建SQL Server AlwaysOn 第三篇(配置AlwaysOn)

    从0开始搭建SQL Server AlwaysOn 第三篇(配置AlwaysOn) 第一篇http://www.cnblogs.com/lyhabc/p/4678330.html第二篇http://w ...

  8. 从0开始搭建SQL Server AlwaysOn 第四篇(配置异地机房节点)

    从0开始搭建SQL Server AlwaysOn 第四篇(配置异地机房节点) 第一篇http://www.cnblogs.com/lyhabc/p/4678330.html第二篇http://www ...

  9. SQL Server on Linux 理由浅析

    SQL Server on Linux 理由浅析 今天的爆炸性新闻<SQL Server on Linux>基本上在各大科技媒体上刷屏了 大家看到这个新闻都觉得非常震精,而美股,今天微软开 ...

随机推荐

  1. 珍藏版 Python 开发工程师面试试题

    珍藏版 Python 开发工程师面试试题 说明:不拿到几家公司的offer,那就是卑鄙的浪费 一.Python_基础语法 1.可变与不可变类型: 2.浅拷贝与深拷贝的实现方式.区别:deepcopy如 ...

  2. ansible自动部署Keepalived实现Nginx服务双机热备

    脚本实现通过ansible-playbook自动化安装Keepalived和配置,主要解决问题如下: Keepalived自动化安装: keepalived_vrid配置,自动根据vip获取最后一段作 ...

  3. hnust 罚时计算器

    问题 F: 罚时计算器 时间限制: 1 Sec  内存限制: 128 MB提交: 229  解决: 63[提交][状态][讨论版] 题目描述 一般 ACM程序设计比赛都是五个小时.但是比赛结束时,DB ...

  4. rownum浅谈(二)

    上篇说到rownum和order by及索引列的关系,明白了通过构建一个子查询把查询结果固定住再取数就可以了 .还是取最近10条创建的用户: select * from (select u.* fro ...

  5. JavaWeb笔记(七)Filter&Listener

    Filter 实现Filter接口 一般用于完成通用的操作,如:登陆验证.统一编码处理.敏感字符过滤等 执行流程 执行过滤器 执行放行后的资源 继续执行过滤器放行代码下的代码 配置 拦截路径配置 注解 ...

  6. Linux下磁盘管理

    设置密码mkpasswdmkpasswd -s 0mkpasswd -s 0 -1 15 规定密码的长度 1. 查看磁盘或者目录的容量df 查看磁盘各分区使用情况 不加参数以k为单位 df -i in ...

  7. Python中的返回函数与闭包

    返回函数,顾名思义,就是高阶函数可以把函数作为return值返回.与闭包的关系是:闭包需要以返回函数的形式实现. 一. 返回函数 比如我们有一个求和函数: >>> def calc_ ...

  8. [poj] 3347 Kadj Square || 计算几何的“线段覆盖”

    原题 多组数据,给出n个正方形的边长,使他们以45度角倾斜的情况下最靠左(在第一象限内),如图.求从上看能看到哪几个完整的正方形. 借鉴于https://www.cnblogs.com/Ritchie ...

  9. 母函数(Generation Function) 入门 + 模板

    转自:母函数 入门 + 模板  感谢 在数学中,某个序列的母函数(Generating function,又称生成函数)是一种形式幂级数,其每一项的系数可以提供关于这个序列的信息.使用母函数解决问题的 ...

  10. C/C++ 运算符 & | 运算

    C/C++中的“按位或 规则: 1|1=1 1|0=1 0|1=1 0|0=0 按位或运算 按位或运算符“|”是双目运算符.其功能是参与运算的两数各对应的二进位(也就是最后一位)相或.只要对应的二个二 ...