This article was found from Geeksforgeeks.org.

Click here to see the original article.

Given an integer array of n integers, find sum of bit differences in all pairs that can be formed from array elements. Bit difference of a pair (x, y) is count of different bits at same positions in binary representations of x and y. 
For example, bit difference for 2 and 7 is 2. Binary representation of 2 is 010 and 7 is 111 ( first and last bits differ in two numbers).

Examples:

Input: arr[] = {1, 2}
Output: 4
All pairs in array are (1, 1), (1, 2)
(2, 1), (2, 2)
Sum of bit differences = 0 + 2 +
2 + 0
= 4 Input: arr[] = {1, 3, 5}
Output: 8
All pairs in array are (1, 1), (1, 3), (1, 5)
(3, 1), (3, 3) (3, 5),
(5, 1), (5, 3), (5, 5)
Sum of bit differences = 0 + 1 + 1 +
1 + 0 + 2 +
1 + 2 + 0
= 8

Source: Google Interview Question

We strongly recommend you to minimize your browser and try this yourself first.

Simple Solution is to run two loops to consider all pairs one by one. For every pair, count bit differences. Finally return sum of counts. Time complexity of this solution is O(n2).

An Efficient Solution can solve this problem in O(n) time using the fact that all numbers are represented using 32 bits (or some fixed number of bits). The idea is to count differences at individual bit positions. We traverse from 0 to 31 and count numbers with i’th bit set. Let this count be ‘count’. There would be “n-count” numbers with i’th bit not set. So count of differences at i’th bit would be “count * (n-count) * 2″.

Below is C++ implementation of above idea.

 // C++ program to compute sum of pairwise bit differences
#include <bits/stdc++.h>
using namespace std; int sumBitDifferences(int arr[], int n)
{
int ans = ; // Initialize result // traverse over all bits
for (int i = ; i < ; i++)
{
// count number of elements with i'th bit set
int count = ;
for (int j = ; j < n; j++)
if ( (arr[j] & ( << i)) )
count++; // Add "count * (n - count) * 2" to the answer
ans += (count * (n - count) * );
} return ans;
} // Driver prorgram
int main()
{
int arr[] = {, , };
int n = sizeof arr / sizeof arr[];
cout << sumBitDifferences(arr, n) << endl;
return ;
}

Sum of bit differences among all pairs的更多相关文章

  1. 数论 - Pairs(数字对)

    In the secret book of ACM, it’s said: “Glory for those who write short ICPC problems. May they live ...

  2. 暑假练习赛 007 E - Pairs

    E - Pairs Description standard input/outputStatements In the secret book of ACM, it’s said: “Glory f ...

  3. A. Difference Row

    A. Difference Row time limit per test 2 seconds memory limit per test 256 megabytes input standard i ...

  4. t检验,T Test (Student’s T-Test)

    1.什么是T test? t-test:比较数据的均值,告诉你这两者之间是否相同,并给出这种不同的显著性(即是否是因为偶然导致的不同) The t test (also called Student’ ...

  5. Spoj-BITDIFF Bit Difference

    Given an integer array of N integers, find the sum of bit differences in all the pairs that can be f ...

  6. [C6] Andrew Ng - Convolutional Neural Networks

    About this Course This course will teach you how to build convolutional neural networks and apply it ...

  7. codefroces Round #201.a--Difference Row

    Time Limit:2000MS     Memory Limit:262144KB     64bit IO Format:%I64d & %I64u Description You wa ...

  8. [LeetCode] Count of Smaller Numbers After Self 计算后面较小数字的个数

    You are given an integer array nums and you have to return a new counts array. The counts array has ...

  9. CodeForces Round 198

    总体感觉这次出的题偏数学,数学若菜表示果断被虐.不过看起来由于大家都被虐我2题居然排到331,rating又升了74.Div2-AA. The Walltime limit per test1 sec ...

随机推荐

  1. Oracle 自增写给自己的

    首先咱先建一张表: CREATE TABLE example( ID Number(4) NOT NULL PRIMARY KEY, NAME VARCHAR(25), PHONE VARCHAR(1 ...

  2. Vue_自定义指令

    关于Vue的自定义指令: - 在Vue中除了核心功能默认内置的指令(v-model & v-show) - Vue也允许注册自定义指令. 注意,在 Vue2.0 中,代码复用和抽象的主要形式是 ...

  3. Linux再谈互斥锁与条件变量

    原文地址:http://blog.chinaunix.net/uid-27164517-id-3282242.html pthread_cond_wait总和一个互斥锁结合使用.在调用pthread_ ...

  4. SPOJ 362 Ignore the Garbage 转7进制+简单大数除法

    显然正着倒着看仍然是数字的只有7个数:0,1,2,5,6,8,9 所以就是用这7个数组合成不同的数. 将n转换成7进制,对应位输出即可. #include <cstdio> #includ ...

  5. Struts1 Spring2 iBatis2 框架的集成

    这个是属于比较老的框架了,奈何现在公司用的产品就是如此,闲来就搭一个集成框架吧 依赖jar包 antlr-.jar aspectj-.jar aspectjrt.jar aspectjweaver-. ...

  6. 【bzoj1856】[Scoi2010]字符串 Catalan数

    题目描述 lxhgww最近接到了一个生成字符串的任务,任务需要他把n个1和m个0组成字符串,但是任务还要求在组成的字符串中,在任意的前k个字符中,1的个数不能少于0的个数.现在lxhgww想要知道满足 ...

  7. Iterator pattern 及其在java API中的运用

    1.问题: 当我们看到java中的Collection,List,Set,Map等集合类时都可以用Iterator进行遍历元素时,我们是否感到很神奇.我们不禁要问java是如何实现这一目标的.这就是我 ...

  8. 转:android service总结2

    转载请注明出处:http://blog.csdn.net/guolin_blog/article/details/11952435 相信大多数朋友对Service这个名词都不会陌生,没错,一个老练的A ...

  9. win7兼容visual studio 2005 的方法

    http://blog.sina.com.cn/s/blog_74d572890100xv7p.html 今天花了4个小时,结合网上的介绍,本人终于找到了一个可以在win7环境下运行visual st ...

  10. Java设计模式_创建型模式_单例模式

    单例模式的实现: 定义一个类,在类中定义该类的静态变量,再定一个一个获取该类的静态变量的方法. UML图: