基于版本jdk1.7.0_80

java.util.HashSet

java.util.LinkedHashSet

代码如下

HashSet,312行

/*
* Copyright (c) 1997, 2010, Oracle and/or its affiliates. All rights reserved.
* ORACLE PROPRIETARY/CONFIDENTIAL. Use is subject to license terms.
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*/ package java.util; /**
* This class implements the <tt>Set</tt> interface, backed by a hash table
* (actually a <tt>HashMap</tt> instance). It makes no guarantees as to the
* iteration order of the set; in particular, it does not guarantee that the
* order will remain constant over time. This class permits the <tt>null</tt>
* element.
*
* <p>This class offers constant time performance for the basic operations
* (<tt>add</tt>, <tt>remove</tt>, <tt>contains</tt> and <tt>size</tt>),
* assuming the hash function disperses the elements properly among the
* buckets. Iterating over this set requires time proportional to the sum of
* the <tt>HashSet</tt> instance's size (the number of elements) plus the
* "capacity" of the backing <tt>HashMap</tt> instance (the number of
* buckets). Thus, it's very important not to set the initial capacity too
* high (or the load factor too low) if iteration performance is important.
*
* <p><strong>Note that this implementation is not synchronized.</strong>
* If multiple threads access a hash set concurrently, and at least one of
* the threads modifies the set, it <i>must</i> be synchronized externally.
* This is typically accomplished by synchronizing on some object that
* naturally encapsulates the set.
*
* If no such object exists, the set should be "wrapped" using the
* {@link Collections#synchronizedSet Collections.synchronizedSet}
* method. This is best done at creation time, to prevent accidental
* unsynchronized access to the set:<pre>
* Set s = Collections.synchronizedSet(new HashSet(...));</pre>
*
* <p>The iterators returned by this class's <tt>iterator</tt> method are
* <i>fail-fast</i>: if the set is modified at any time after the iterator is
* created, in any way except through the iterator's own <tt>remove</tt>
* method, the Iterator throws a {@link ConcurrentModificationException}.
* Thus, in the face of concurrent modification, the iterator fails quickly
* and cleanly, rather than risking arbitrary, non-deterministic behavior at
* an undetermined time in the future.
*
* <p>Note that the fail-fast behavior of an iterator cannot be guaranteed
* as it is, generally speaking, impossible to make any hard guarantees in the
* presence of unsynchronized concurrent modification. Fail-fast iterators
* throw <tt>ConcurrentModificationException</tt> on a best-effort basis.
* Therefore, it would be wrong to write a program that depended on this
* exception for its correctness: <i>the fail-fast behavior of iterators
* should be used only to detect bugs.</i>
*
* <p>This class is a member of the
* <a href="{@docRoot}/../technotes/guides/collections/index.html">
* Java Collections Framework</a>.
*
* @param <E> the type of elements maintained by this set
*
* @author Josh Bloch
* @author Neal Gafter
* @see Collection
* @see Set
* @see TreeSet
* @see HashMap
* @since 1.2
*/ public class HashSet<E>
extends AbstractSet<E>
implements Set<E>, Cloneable, java.io.Serializable
{
static final long serialVersionUID = -5024744406713321676L; private transient HashMap<E,Object> map; // Dummy value to associate with an Object in the backing Map
private static final Object PRESENT = new Object(); /**
* Constructs a new, empty set; the backing <tt>HashMap</tt> instance has
* default initial capacity (16) and load factor (0.75).
*/
public HashSet() {
map = new HashMap<>();
} /**
* Constructs a new set containing the elements in the specified
* collection. The <tt>HashMap</tt> is created with default load factor
* (0.75) and an initial capacity sufficient to contain the elements in
* the specified collection.
*
* @param c the collection whose elements are to be placed into this set
* @throws NullPointerException if the specified collection is null
*/
public HashSet(Collection<? extends E> c) {
map = new HashMap<>(Math.max((int) (c.size()/.75f) + 1, 16));
addAll(c);
} /**
* Constructs a new, empty set; the backing <tt>HashMap</tt> instance has
* the specified initial capacity and the specified load factor.
*
* @param initialCapacity the initial capacity of the hash map
* @param loadFactor the load factor of the hash map
* @throws IllegalArgumentException if the initial capacity is less
* than zero, or if the load factor is nonpositive
*/
public HashSet(int initialCapacity, float loadFactor) {
map = new HashMap<>(initialCapacity, loadFactor);
} /**
* Constructs a new, empty set; the backing <tt>HashMap</tt> instance has
* the specified initial capacity and default load factor (0.75).
*
* @param initialCapacity the initial capacity of the hash table
* @throws IllegalArgumentException if the initial capacity is less
* than zero
*/
public HashSet(int initialCapacity) {
map = new HashMap<>(initialCapacity);
} /**
* Constructs a new, empty linked hash set. (This package private
* constructor is only used by LinkedHashSet.) The backing
* HashMap instance is a LinkedHashMap with the specified initial
* capacity and the specified load factor.
*
* @param initialCapacity the initial capacity of the hash map
* @param loadFactor the load factor of the hash map
* @param dummy ignored (distinguishes this
* constructor from other int, float constructor.)
* @throws IllegalArgumentException if the initial capacity is less
* than zero, or if the load factor is nonpositive
*/
HashSet(int initialCapacity, float loadFactor, boolean dummy) {
map = new LinkedHashMap<>(initialCapacity, loadFactor);
} /**
* Returns an iterator over the elements in this set. The elements
* are returned in no particular order.
*
* @return an Iterator over the elements in this set
* @see ConcurrentModificationException
*/
public Iterator<E> iterator() {
return map.keySet().iterator();
} /**
* Returns the number of elements in this set (its cardinality).
*
* @return the number of elements in this set (its cardinality)
*/
public int size() {
return map.size();
} /**
* Returns <tt>true</tt> if this set contains no elements.
*
* @return <tt>true</tt> if this set contains no elements
*/
public boolean isEmpty() {
return map.isEmpty();
} /**
* Returns <tt>true</tt> if this set contains the specified element.
* More formally, returns <tt>true</tt> if and only if this set
* contains an element <tt>e</tt> such that
* <tt>(o==null&nbsp;?&nbsp;e==null&nbsp;:&nbsp;o.equals(e))</tt>.
*
* @param o element whose presence in this set is to be tested
* @return <tt>true</tt> if this set contains the specified element
*/
public boolean contains(Object o) {
return map.containsKey(o);
} /**
* Adds the specified element to this set if it is not already present.
* More formally, adds the specified element <tt>e</tt> to this set if
* this set contains no element <tt>e2</tt> such that
* <tt>(e==null&nbsp;?&nbsp;e2==null&nbsp;:&nbsp;e.equals(e2))</tt>.
* If this set already contains the element, the call leaves the set
* unchanged and returns <tt>false</tt>.
*
* @param e element to be added to this set
* @return <tt>true</tt> if this set did not already contain the specified
* element
*/
public boolean add(E e) {
return map.put(e, PRESENT)==null;
} /**
* Removes the specified element from this set if it is present.
* More formally, removes an element <tt>e</tt> such that
* <tt>(o==null&nbsp;?&nbsp;e==null&nbsp;:&nbsp;o.equals(e))</tt>,
* if this set contains such an element. Returns <tt>true</tt> if
* this set contained the element (or equivalently, if this set
* changed as a result of the call). (This set will not contain the
* element once the call returns.)
*
* @param o object to be removed from this set, if present
* @return <tt>true</tt> if the set contained the specified element
*/
public boolean remove(Object o) {
return map.remove(o)==PRESENT;
} /**
* Removes all of the elements from this set.
* The set will be empty after this call returns.
*/
public void clear() {
map.clear();
} /**
* Returns a shallow copy of this <tt>HashSet</tt> instance: the elements
* themselves are not cloned.
*
* @return a shallow copy of this set
*/
public Object clone() {
try {
HashSet<E> newSet = (HashSet<E>) super.clone();
newSet.map = (HashMap<E, Object>) map.clone();
return newSet;
} catch (CloneNotSupportedException e) {
throw new InternalError();
}
} /**
* Save the state of this <tt>HashSet</tt> instance to a stream (that is,
* serialize it).
*
* @serialData The capacity of the backing <tt>HashMap</tt> instance
* (int), and its load factor (float) are emitted, followed by
* the size of the set (the number of elements it contains)
* (int), followed by all of its elements (each an Object) in
* no particular order.
*/
private void writeObject(java.io.ObjectOutputStream s)
throws java.io.IOException {
// Write out any hidden serialization magic
s.defaultWriteObject(); // Write out HashMap capacity and load factor
s.writeInt(map.capacity());
s.writeFloat(map.loadFactor()); // Write out size
s.writeInt(map.size()); // Write out all elements in the proper order.
for (E e : map.keySet())
s.writeObject(e);
} /**
* Reconstitute the <tt>HashSet</tt> instance from a stream (that is,
* deserialize it).
*/
private void readObject(java.io.ObjectInputStream s)
throws java.io.IOException, ClassNotFoundException {
// Read in any hidden serialization magic
s.defaultReadObject(); // Read in HashMap capacity and load factor and create backing HashMap
int capacity = s.readInt();
float loadFactor = s.readFloat();
map = (((HashSet)this) instanceof LinkedHashSet ?
new LinkedHashMap<E,Object>(capacity, loadFactor) :
new HashMap<E,Object>(capacity, loadFactor)); // Read in size
int size = s.readInt(); // Read in all elements in the proper order.
for (int i=0; i<size; i++) {
E e = (E) s.readObject();
map.put(e, PRESENT);
}
}
}

LinkedHashSet,171行

/*
* Copyright (c) 2000, 2006, Oracle and/or its affiliates. All rights reserved.
* ORACLE PROPRIETARY/CONFIDENTIAL. Use is subject to license terms.
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*/ package java.util; /**
* <p>Hash table and linked list implementation of the <tt>Set</tt> interface,
* with predictable iteration order. This implementation differs from
* <tt>HashSet</tt> in that it maintains a doubly-linked list running through
* all of its entries. This linked list defines the iteration ordering,
* which is the order in which elements were inserted into the set
* (<i>insertion-order</i>). Note that insertion order is <i>not</i> affected
* if an element is <i>re-inserted</i> into the set. (An element <tt>e</tt>
* is reinserted into a set <tt>s</tt> if <tt>s.add(e)</tt> is invoked when
* <tt>s.contains(e)</tt> would return <tt>true</tt> immediately prior to
* the invocation.)
*
* <p>This implementation spares its clients from the unspecified, generally
* chaotic ordering provided by {@link HashSet}, without incurring the
* increased cost associated with {@link TreeSet}. It can be used to
* produce a copy of a set that has the same order as the original, regardless
* of the original set's implementation:
* <pre>
* void foo(Set s) {
* Set copy = new LinkedHashSet(s);
* ...
* }
* </pre>
* This technique is particularly useful if a module takes a set on input,
* copies it, and later returns results whose order is determined by that of
* the copy. (Clients generally appreciate having things returned in the same
* order they were presented.)
*
* <p>This class provides all of the optional <tt>Set</tt> operations, and
* permits null elements. Like <tt>HashSet</tt>, it provides constant-time
* performance for the basic operations (<tt>add</tt>, <tt>contains</tt> and
* <tt>remove</tt>), assuming the hash function disperses elements
* properly among the buckets. Performance is likely to be just slightly
* below that of <tt>HashSet</tt>, due to the added expense of maintaining the
* linked list, with one exception: Iteration over a <tt>LinkedHashSet</tt>
* requires time proportional to the <i>size</i> of the set, regardless of
* its capacity. Iteration over a <tt>HashSet</tt> is likely to be more
* expensive, requiring time proportional to its <i>capacity</i>.
*
* <p>A linked hash set has two parameters that affect its performance:
* <i>initial capacity</i> and <i>load factor</i>. They are defined precisely
* as for <tt>HashSet</tt>. Note, however, that the penalty for choosing an
* excessively high value for initial capacity is less severe for this class
* than for <tt>HashSet</tt>, as iteration times for this class are unaffected
* by capacity.
*
* <p><strong>Note that this implementation is not synchronized.</strong>
* If multiple threads access a linked hash set concurrently, and at least
* one of the threads modifies the set, it <em>must</em> be synchronized
* externally. This is typically accomplished by synchronizing on some
* object that naturally encapsulates the set.
*
* If no such object exists, the set should be "wrapped" using the
* {@link Collections#synchronizedSet Collections.synchronizedSet}
* method. This is best done at creation time, to prevent accidental
* unsynchronized access to the set: <pre>
* Set s = Collections.synchronizedSet(new LinkedHashSet(...));</pre>
*
* <p>The iterators returned by this class's <tt>iterator</tt> method are
* <em>fail-fast</em>: if the set is modified at any time after the iterator
* is created, in any way except through the iterator's own <tt>remove</tt>
* method, the iterator will throw a {@link ConcurrentModificationException}.
* Thus, in the face of concurrent modification, the iterator fails quickly
* and cleanly, rather than risking arbitrary, non-deterministic behavior at
* an undetermined time in the future.
*
* <p>Note that the fail-fast behavior of an iterator cannot be guaranteed
* as it is, generally speaking, impossible to make any hard guarantees in the
* presence of unsynchronized concurrent modification. Fail-fast iterators
* throw <tt>ConcurrentModificationException</tt> on a best-effort basis.
* Therefore, it would be wrong to write a program that depended on this
* exception for its correctness: <i>the fail-fast behavior of iterators
* should be used only to detect bugs.</i>
*
* <p>This class is a member of the
* <a href="{@docRoot}/../technotes/guides/collections/index.html">
* Java Collections Framework</a>.
*
* @param <E> the type of elements maintained by this set
*
* @author Josh Bloch
* @see Object#hashCode()
* @see Collection
* @see Set
* @see HashSet
* @see TreeSet
* @see Hashtable
* @since 1.4
*/ public class LinkedHashSet<E>
extends HashSet<E>
implements Set<E>, Cloneable, java.io.Serializable { private static final long serialVersionUID = -2851667679971038690L; /**
* Constructs a new, empty linked hash set with the specified initial
* capacity and load factor.
*
* @param initialCapacity the initial capacity of the linked hash set
* @param loadFactor the load factor of the linked hash set
* @throws IllegalArgumentException if the initial capacity is less
* than zero, or if the load factor is nonpositive
*/
public LinkedHashSet(int initialCapacity, float loadFactor) {
super(initialCapacity, loadFactor, true);
} /**
* Constructs a new, empty linked hash set with the specified initial
* capacity and the default load factor (0.75).
*
* @param initialCapacity the initial capacity of the LinkedHashSet
* @throws IllegalArgumentException if the initial capacity is less
* than zero
*/
public LinkedHashSet(int initialCapacity) {
super(initialCapacity, .75f, true);
} /**
* Constructs a new, empty linked hash set with the default initial
* capacity (16) and load factor (0.75).
*/
public LinkedHashSet() {
super(16, .75f, true);
} /**
* Constructs a new linked hash set with the same elements as the
* specified collection. The linked hash set is created with an initial
* capacity sufficient to hold the elements in the specified collection
* and the default load factor (0.75).
*
* @param c the collection whose elements are to be placed into
* this set
* @throws NullPointerException if the specified collection is null
*/
public LinkedHashSet(Collection<? extends E> c) {
super(Math.max(2*c.size(), 11), .75f, true);
addAll(c);
}
}

这两个类都很简单,于是合在一起讲了

HashSet

1. 接口分析

继承于AbstractSet抽象类

Set,Cloneable,java.io.Serializable接口

2. 实现原理

内置了一个HashMap,任何操作都是将传入的key与一个dummy对象组成一对,然后对这个内置的HashMap操作

随意列举几个关键方法如下

    public int size() {
return map.size();
} public boolean contains(Object o) {
return map.containsKey(o);
} public boolean add(E e) {
return map.put(e, PRESENT)==null;
} public boolean remove(Object o) {
return map.remove(o)==PRESENT;
}

3. 对LinkedHashSet的支持

HashSet有一个friendly访问权限的构造方法,其中创建了LinkedHashMap用来存储对象

这个构造方法只有LinkedHashSet会调用

4. 迭代器

返回的迭代器是内置map的keyset的迭代器

    public Iterator<E> iterator() {
return map.keySet().iterator();
}

LinkedHashSet

1. 接口分析

继承于HashSet类

Set,Cloneable,java.io.Serializable接口

2. 实现原理

全部调用父类HashSet的方法

父类HashSet再利用内部集成的LinkedHashMap来实现按元素的最后访问次序来迭代遍历

JDK7集合框架源码阅读(六) HashSet与LinkedHashSet的更多相关文章

  1. JDK7集合框架源码阅读(五) Hashtable

    基于版本jdk1.7.0_80 java.util.Hashtable 代码如下 /* * Copyright (c) 1994, 2011, Oracle and/or its affiliates ...

  2. JDK7集合框架源码阅读(二) LinkedList

    基于版本jdk1.7.0_80 java.util.LinkedList 代码如下 /* * Copyright (c) 1997, 2011, Oracle and/or its affiliate ...

  3. JDK7集合框架源码阅读(四) LinkedHashMap

    基于版本jdk1.7.0_80 java.util.LinkedHashMap 代码如下 /* * Copyright (c) 2000, 2010, Oracle and/or its affili ...

  4. JDK7集合框架源码阅读(一) ArrayList

    基于版本jdk1.7.0_80 java.util.ArrayList 代码如下 /* * Copyright (c) 1997, 2013, Oracle and/or its affiliates ...

  5. JDK7集合框架源码阅读(三) HashMap

    基于版本jdk1.7.0_80 java.util.HashMap 代码如下 /* * Copyright (c) 1997, 2010, Oracle and/or its affiliates. ...

  6. JDK7集合框架源码阅读(七) ArrayDeque

    基于版本jdk1.7.0_80 java.util.ArrayDeque 代码如下 /* * ORACLE PROPRIETARY/CONFIDENTIAL. Use is subject to li ...

  7. 【java集合框架源码剖析系列】java源码剖析之HashSet

    注:博主java集合框架源码剖析系列的源码全部基于JDK1.8.0版本.本博客将从源码角度带领大家学习关于HashSet的知识. 一HashSet的定义: public class HashSet&l ...

  8. Java集合框架源码(二)——hashSet

    注:本人的源码基于JDK1.8.0,JDK的版本可以在命令行模式下通过java -version命令查看. 在前面的博文(Java集合框架源码(一)——hashMap)中我们详细讲了HashMap的原 ...

  9. 【java集合框架源码剖析系列】java源码剖析之TreeSet

    本博客将从源码的角度带领大家学习TreeSet相关的知识. 一TreeSet类的定义: public class TreeSet<E> extends AbstractSet<E&g ...

随机推荐

  1. 如何创造财富?硅谷创业之父 Paul Graham 《黑客与画家》思维导图

    先送上亚马逊传送门:<黑客与画家>:硅谷创业之父 Paul Graham 文集 再送上一个思维导图: 下载大图:http://caifujianghu.com/article/ruhe-c ...

  2. 二 APPIUM Android自动化 测试初体验

    本文转自:http://www.cnblogs.com/sundalian/p/5629358.html 1.创建一个maven项目 成功新建工程: 编辑pom.xml,在<dependenci ...

  3. Set(), Get() 真正的目的

    在各种面向对象编程中,都有 Set(), Get() 两种方法. 1 常见理解 1 为了保证安全性 2 为了规范代码 其实这些理解都是对的.具体看我们从哪个角度去理解这个内容. 2 个人理解 2.1 ...

  4. # Including Artificial Intelligence in a Routing ProtocolUsing Software Defined Networks

    Abstract: 问题:AI在路由协议上的应用仅适用于真实设备,尤其是无线传感器节点 The inclusion of artificial intelligence (AI) can improv ...

  5. Linux自学系列 -- 常用指令的使用

    1.查看目录下内容>ls //列出目录下的文件信息>ls -l      //以“详细信息"查看目录文件>ls -a     //查看目录“全部”(包括隐藏文件)文件> ...

  6. Block层也是有IO的优先级的

    ---恢复内容开始--- 今天查看iotop的原理,竟然发现了IO优先级一说,IO是block层cfs调度器中的概念 block层也有一个类似于CPU的调度算法 对进程分成三个级别:RT,BE,IDL ...

  7. POJ 2942 Knights of the Round Table 补图+tarjan求点双联通分量+二分图染色+debug

    题面还好,就不描述了 重点说题解: 由于仇恨关系不好处理,所以可以搞补图存不仇恨关系, 如果一个桌子上面的人能坐到一起,显然他们满足能构成一个环 所以跑点双联通分量 求点双联通分量我用的是向栈中pus ...

  8. Sublime Text 2 HTML代码缩进 美化HTML代码

    关于代码格式的美化,之前在win下一直用“alignment”这个插件,它能实现一键对齐和缩进.最近使用mac版的sublime text 2,不知道是什么原因,这个插件疑似失效…… 这对有洁癖的完美 ...

  9. WebRTC 视频对话

    今天聊一下WebRTC.很多开发者,可能会觉得有些陌生,或者直接感觉繁杂.因为WebRTC在iOS上的应用,只是编译都让人很是头痛.这些话,到此为止,以防让了解者失去信心.我们只传播正能量,再多的困难 ...

  10. java中TCP两个例子大写服务器和文件上传

    大写服务器的实例: package com.core.net; import java.io.BufferedReader; import java.io.BufferedWriter; import ...