CF446A DZY Loves Sequences 简单dp
DZY has a sequence a, consisting of n integers.
We'll call a sequence ai, ai + 1, ..., aj (1 ≤ i ≤ j ≤ n) a subsegment of the sequence a. The value (j - i + 1) denotes the length of the subsegment.
Your task is to find the longest subsegment of a, such that it is possible to change at most one number (change one number to any integer you want) from the subsegment to make the subsegment strictly increasing.
You only need to output the length of the subsegment you find.
The first line contains integer n (1 ≤ n ≤ 105). The next line contains n integers a1, a2, ..., an (1 ≤ ai ≤ 109).
In a single line print the answer to the problem — the maximum length of the required subsegment.
6
7 2 3 1 5 6
5
You can choose subsegment a2, a3, a4, a5, a6 and change its 3rd element (that is a4) to 4.
问最多修改一个数字,序列可获得地最大严格递增字段长度为多大;
考虑dp;
dp1 表示以 i 位置结尾的最长子段长度;
dp2 表示以 i 位置开头的最长子段长度;
特判一下当 n=1时,长度为1;
考虑拼接:当 x[ i+1 ]>=2+ x[ i-1 ]时,那么改变 x[ i ]即可拼接子段
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstdlib>
#include<cstring>
#include<string>
#include<cmath>
#include<map>
#include<set>
#include<vector>
#include<queue>
#include<bitset>
#include<ctime>
#include<deque>
#include<stack>
#include<functional>
#include<sstream>
//#include<cctype>
//#pragma GCC optimize(2)
using namespace std;
#define maxn 200005
#define inf 0x7fffffff
//#define INF 1e18
#define rdint(x) scanf("%d",&x)
#define rdllt(x) scanf("%lld",&x)
#define rdult(x) scanf("%lu",&x)
#define rdlf(x) scanf("%lf",&x)
#define rdstr(x) scanf("%s",x)
typedef long long ll;
typedef unsigned long long ull;
typedef unsigned int U;
#define ms(x) memset((x),0,sizeof(x))
const long long int mod = 1e9 + 7;
#define Mod 1000000000
#define sq(x) (x)*(x)
#define eps 1e-3
typedef pair<int, int> pii;
#define pi acos(-1.0)
//const int N = 1005;
#define REP(i,n) for(int i=0;i<(n);i++)
typedef pair<int, int> pii;
inline ll rd() {
ll x = 0;
char c = getchar();
bool f = false;
while (!isdigit(c)) {
if (c == '-') f = true;
c = getchar();
}
while (isdigit(c)) {
x = (x << 1) + (x << 3) + (c ^ 48);
c = getchar();
}
return f ? -x : x;
} ll gcd(ll a, ll b) {
return b == 0 ? a : gcd(b, a%b);
}
ll sqr(ll x) { return x * x; } /*ll ans;
ll exgcd(ll a, ll b, ll &x, ll &y) {
if (!b) {
x = 1; y = 0; return a;
}
ans = exgcd(b, a%b, x, y);
ll t = x; x = y; y = t - a / b * y;
return ans;
}
*/ int n;
int x[maxn]; int main() {
//ios::sync_with_stdio(0);
cin >> n;
vector<int>dp1(maxn, 1);
vector<int>dp2(maxn, 1);
for (int i = 0; i <= n; i++)dp1[i] = dp2[i] = 1;
for (int i = 0; i < n; i++)rdint(x[i]);
if (n < 2) {
cout << 1 << endl; return 0;
}
for (int i = 1; i < n; i++)
dp1[i] = (x[i] > x[i - 1]) ? dp1[i - 1] + 1 : 1;
for (int i = n - 2; i >= 0; i--)
dp2[i] = (x[i + 1] > x[i]) ? dp2[i + 1] + 1 : 1;
int ans = 0;
for (int i = 1; i < n; i++)ans = max(ans, dp1[i - 1] + 1);
for (int i = 0; i < n; i++)ans = max(dp2[i + 1] + 1, ans);
for (int i = 1; i <= n - 1; i++) { if (x[i + 1] - x[i - 1] >= 2) {
ans = max(ans, dp1[i - 1] + 1 + dp2[i + 1]);
}
}
cout << ans << endl;
return 0;
}
CF446A DZY Loves Sequences 简单dp的更多相关文章
- cf446A DZY Loves Sequences
A. DZY Loves Sequences time limit per test 1 second memory limit per test 256 megabytes input standa ...
- codeforces#FF DIV2C题DZY Loves Sequences(DP)
题目地址:http://codeforces.com/contest/447/problem/C C. DZY Loves Sequences time limit per test 1 second ...
- Codeforces 447 C DZY Loves Sequences【DP】
题意:给出一列数,在这个序列里面找到一个连续的严格上升的子串,现在可以任意修改序列里面的一个数,问得到的子串最长是多少 看的题解,自己没有想出来 假设修改的是a[i],那么有三种情况, 1.a[i]& ...
- Codeforces 446A. DZY Loves Sequences (线性DP)
<题目链接> 题目大意: 给定一个长度为$n$的序列,现在最多能够改变其中的一个数字,使其变成任意值.问你这个序列的最长严格上升子段的长度是多少. #include <bits/st ...
- CodeForces - 446A DZY Loves Sequences(dp)
题意:给定一个序列a,求最长的连续子序列b的长度,在至多修改b内一个数字(可修改为任何数字)的条件下,使得b严格递增. 分析: 1.因为至多修改一个数字,假设修改a[i], 2.若能使a[i] < ...
- DP Codeforces Round #FF (Div. 1) A. DZY Loves Sequences
题目传送门 /* DP:先用l,r数组记录前缀后缀上升长度,最大值会在三种情况中产生: 1. a[i-1] + 1 < a[i+1],可以改a[i],那么值为l[i-1] + r[i+1] + ...
- Codeforces Round #FF 446A DZY Loves Sequences
预处理出每一个数字能够向后延伸多少,然后尝试将两段拼起来. C. DZY Loves Sequences time limit per test 1 second memory limit per t ...
- Codeforces 447C - DZY Loves Sequences
447C - DZY Loves Sequences 思路:dp 代码: #include<bits/stdc++.h> using namespace std; #define ll l ...
- Codeforces Round #FF (Div. 2):C. DZY Loves Sequences
C. DZY Loves Sequences time limit per test 1 second memory limit per test 256 megabytes input standa ...
随机推荐
- linux命令学习笔记(55):traceroute命令
通过traceroute我们可以知道信息从你的计算机到互联网另一端的主机是走的什么路径.当然每次数据包 由某一同样的出发点(source)到达某一同样的目的地(destination)走的路径可能会不 ...
- 前向纠错码(FEC)的RTP荷载格式
http://www.rosoo.net/a/201110/15146.html 本文档规定了一般性的前向纠错的媒体数据流的RTP打包格式.这种格式针对基于异或操作的FEC算法进行了特殊设计,它允许终 ...
- 启用Linux云平台oracle数据库实口令复杂性函数:PASSWORD_VERIFY_FUNCTION=NULL
第一步:采用putty.exe登录数据库服务器. 输入IP后点击“Open”按钮: 第二步:登录对应的数据库实例. 执行:# su – oracle 查找:$ps -ef | grep pmon 找到 ...
- URI is not registered (Settings | Languages & Frameworks | Schemas and DTDs)
解决:鼠标悬于上方Alt + Enter 选择Ignore
- 洛谷【P3379】【模板】最近公共祖先(LCA)
浅谈\(RMQ\):https://www.cnblogs.com/AKMer/p/10128219.html 题目传送门:https://www.luogu.org/problemnew/show/ ...
- POJ 1046 Color Me Less(浅水)
一.Description A color reduction is a mapping from a set of discrete colors to a smaller one. The sol ...
- UVA624(01背包记录路径)
题目链接:https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem ...
- linux下go的动态链接库的使用
转自:http://blog.csdn.net/xtxy/article/details/21328143 在使用lua进行服务器端游戏逻辑开发时,发现了LUA的各种不方便的地方,不能编译检查,不能断 ...
- python 链表
在C/C++中,通常采用“指针+结构体”来实现链表:而在Python中,则可以采用“引用+类”来实现链表. 节点类: class Node: def __init__(self, data): sel ...
- C# 将html实体编码转换到正常字符 & #40;格式
获取到html实体编码字符后,通过正则获取其中的html实体编码,再统一强制转换到正常字符: 代码如下: string strformat = item.value7; //将html实体编码转换到正 ...