题目链接:http://poj.org/problem?id=2229

Sumsets

Time Limit: 2000MS Memory Limit: 200000K

Total Submissions: 21845 Accepted: 8454

Description

Farmer John commanded his cows to search for different sets of numbers that sum to a given number. The cows use only numbers that are an integer power of 2. Here are the possible sets of numbers that sum to 7:

1) 1+1+1+1+1+1+1

2) 1+1+1+1+1+2

3) 1+1+1+2+2

4) 1+1+1+4

5) 1+2+2+2

6) 1+2+4

Help FJ count all possible representations for a given integer N (1 <= N <= 1,000,000).

Input

A single line with a single integer, N.

Output

The number of ways to represent N as the indicated sum. Due to the potential huge size of this number, print only last 9 digits (in base 10 representation).

Sample Input

7

Sample Output

6


解题心得:

  1. 问给你一系列2的N次方的数,让你用这些数相加起来等于m,问一共有多少种方法。
  2. 刚开始看到这个题的时候第一个反应就是青蛙跳台阶的问题(链接),按照这个思路状态转移就出来了。dp[n][m] += dp[n-1][m-k*c[i]],在空间上优化可以使用滚动数组来进行优化。这样还是会TLE,因为没有优化过的完全背包是三重循环,这个时候就需要用到完全背包的优化,完全背包的优化其实很简单,思想就是既然背包有无穷多个,那么直接从小到大开始叠加就行了,会自然叠加到最大,这样就可以省去k个背包的循环,利用的就是k无穷大不用一一进行枚举。可以很简单的看懂优化代码。

没有优化过的完全背包(大概写法):

for(int i=0;i<n;i++) {
for(int k=1;k*c[i] <= n;k++) {
for(int j=m;j>=k*c[i];k--) {
dp[j] += dp[j-k*c[i]];
}
}
}

完全背包的时间优化(大概写法):

for(int i=0;i<n;i++) {
for(int j=c[i];j<=n;j++) {//注意这里是从小到大开始叠加
dp[j] += dp[j-c[i]];
}
}

AC代码:

#include <cstdio>
#include <cstring>
#include <algorithm> using namespace std; const int maxn = (int) 1e6 + 10;
int n, dp[maxn];
int Mod = (int) 1e9; int main() {
int T = 1;
while (~scanf("%d", &n)) {
memset(dp, 0, sizeof(dp));
dp[0] = 1;
while (T <= n) {
for (int j = T; j <= n; j++) {
dp[j] += dp[j - T];
dp[j] %= Mod;
}
T <<= 1;
}
printf("%d\n", dp[n]);
return 0;
}
}

POJ:2229-Sumsets(完全背包的优化)的更多相关文章

  1. poj 2229 Sumsets 完全背包求方案总数

    Sumsets Description Farmer John commanded his cows to search for different sets of numbers that sum ...

  2. poj 2229 【完全背包dp】【递推dp】

    poj 2229 Sumsets Time Limit: 2000MS   Memory Limit: 200000K Total Submissions: 21281   Accepted: 828 ...

  3. POJ 2229 Sumsets(技巧题, 背包变形)

    discuss 看到有人讲完全背包可以过, 假如我自己做的话, 也只能想到完全背包了 思路: 1. 当 n 为奇数时, f[n] = f[n-1], 因为只需在所有的序列前添加一个 1 即可, 所有的 ...

  4. poj -2229 Sumsets (dp)

    http://poj.org/problem?id=2229 题意很简单就是给你一个数n,然后选2的整数幂之和去组成这个数.问你不同方案数之和是多少? n很大,所以输出后9位即可. dp[i] 表示组 ...

  5. POJ 1014 Dividing(多重背包, 倍增优化)

    Q: 倍增优化后, 还是有重复的元素, 怎么办 A: 假定重复的元素比较少, 不用考虑 Description Marsha and Bill own a collection of marbles. ...

  6. POJ 2229 Sumsets

    Sumsets Time Limit: 2000MS   Memory Limit: 200000K Total Submissions: 11892   Accepted: 4782 Descrip ...

  7. poj 2229 Sumsets(dp)

    Sumsets Time Limit : 4000/2000ms (Java/Other)   Memory Limit : 400000/200000K (Java/Other) Total Sub ...

  8. POJ 2229 sumset ( 完全背包 || 规律递推DP )

    题意 : 给出一个数 n ,问如果使用 2 的幂的和来组成这个数 n 有多少种不同的方案? 分析 :  完全背包解法 将问题抽象==>有重量分别为 2^0.2^1.2^2…2^k 的物品且每种物 ...

  9. poj 2229 Sumsets DP

    题意:给定一个整数N (1<= N <= 1000000),求出以 N为和 的式子有多少个,式子中的加数只能有2的幂次方组成 如5 : 1+1+1+1+1.1+1+1+2.1+2+2.1+ ...

  10. poj 2229 Sumsets(dp 或 数学)

    Description Farmer John commanded his cows to search . Here are the possible sets of numbers that su ...

随机推荐

  1. Js仿腾讯微博效果

    <!DOCTYPE html> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <m ...

  2. Sharepoint 2013企业内容管理学习笔记(二) 全自动化内容管理

    全自动化内容管理 所谓全自动化内容管理啊,其实对于用户来说,就更简单便捷有爱了,用户只需要把文件上传到部门网站的放置库中,文件就会快速自动躺到企业记录中心的某个归档记录库了,怎么样,很方便,有没有,很 ...

  3. lunix重启service network restart错误Job for network.service failed. See 'system 或Failed to start LSB: Bring

    1.mac地址不对 通过ip addr查看mac地址,然后修改cd /etc/sysconfig/network-scripts/目录下的文件里面的mac地址 2.通过以下方法 systemctl s ...

  4. selenium 上传文件。

    上传文件 driver.findElement(By.xpath("//input[@type='file']"))).sendKeys("C:\\testContent ...

  5. Lucene学习入门——核心类API

    本文讲解Lucene中,创建索引.搜索等常用到的类API 搜索操作比索引操作重要的多,因为索引文件只被创建一次,却要被搜索多次. 索引过程的核心类: 执行简单的索引过程需要如下几个类:IndexWri ...

  6. PHP : 数据库中int类型保存时间并通过年月份时分秒进行显示

    1.表设计: 2.数据库操作页面:将时间戳插入到数据库中 我们到数据库中可以看到: 3.我们将数据进行显示: 页面结果:(二维数组) 4.以为用mysqli_fetch_all得到的是二维数组,那么我 ...

  7. java集合框架——Set

    一.Set概述 Set集合的特点是元素不允许重复,而且是无序的(添加和取出的顺序不一致). Set接口中的方法和Collection接口中的方法几乎相同,略. Set接口下常用的两个类:HashSet ...

  8. 初学React:JSX语法

    这是本人初学React做的学习笔记;讲的不是很深,只算是简单的进行介绍. 这是一个小系列.都是在同一个模板中搭建的,但是代码是不能正常执行的. >>第一个组件.js 'use strick ...

  9. Android(java)学习笔记72:ProgressBar的使用

    1. ProgressBar使用 首先我们看例程如下: (1) main.xml文件如下: <?xml version="1.0" encoding="utf-8& ...

  10. Android(java)学习笔记70:TabActivity使用

    1.首先我们要知道TabActivity是结合TabHost使用的,于是我们自然而然要说明一下TabHost 所谓的TabHost是提供选项卡(Tab页)的窗口视图容器. 此对象包含两个子对象: 一个 ...