[AtCoder ARC093F]Dark Horse
题目大意:有$2^n$个人,每相邻的两个人比赛一次。令两个人的编号为$a,b(a\leqslant b)$,若$a\neq 1$,则$a$的人获胜;否则若$b\in S$则$b$获胜,不然$1$获胜。钦定$1$获胜,问可以的开始的顺序的方案数
题解:状压$DP$,令开始的第$i$位的人的编号为$p_i$,发现到只有$\min\limits_{i\in[2^{j-1}+1,2^j]}\{p_i\}(1\leqslant j\leqslant n)$的人会和$1$打,考虑容斥,令$f_{i,j}$为到了要放$S$中的第$i$个人,现在第$k$个段($[2^{k-1}+1,2^k]$)中的最小值在$S$中的状态为$1<<k \& j$,时可以战胜$1$的方案数。(发现一个很优美的东西,$j==已经放置的人数$)
卡点:无
C++ Code:
#include <cstdio>
#define N 1 << 16 | 3
const int mod = 1000000007;
int n, m, s[20];
long long fac[N], inv[N];
long long f[17][N], ans, U;
void update(long long &x, long long y) {if ((x += y) >= mod) x -= mod;}
long long C(long long a, long long b) {
if (a < b) return 0;
return fac[a] * inv[b] % mod * inv[a - b] % mod;
}
int main () {
scanf("%d%d", &n, &m); U = 1 << n;
for (int i = 1; i <= m; i++) scanf("%d", s + m - i);
fac[0] = fac[1] = inv[0] = inv[1] = 1;
for (int i = 2; i < U; i++) {
fac[i] = fac[i - 1] * i % mod;
inv[i] = inv[mod % i] * (mod - mod / i) % mod;
}
for (int i = 2; i < U; i++) inv[i] = inv[i - 1] * inv[i] % mod;
f[0][0] = 1;
for (int i = 0; i < m; i++) {
for (int j = 0; j < U; j++) {
update(f[i + 1][j], f[i][j]);
for (int k = 0; k < n; k++) {
if (!(j & (1 << k))) update(f[i + 1][j | 1 << k], f[i][j] * fac[1 << k] % mod * C(U - j - s[i], (1 << k) - 1) % mod);
}
}
}
for (int i = 0; i < U; i++) {
long long tmp = f[m][i] * fac[U - i - 1] % mod;
update(ans, __builtin_parity(i) ? (mod - tmp) : tmp);
}
printf("%lld\n", ans * U % mod);
return 0;
}
[AtCoder ARC093F]Dark Horse的更多相关文章
- ARC093F Dark Horse 容斥原理+DP
题目传送门 https://atcoder.jp/contests/arc093/tasks/arc093_d 题解 由于不论 \(1\) 在哪个位置,一轮轮下来,基本上过程都是相似的,所以不妨假设 ...
- arc093F Dark Horse
我们可以假设1的位置在1,并且依次与右边的区间合并.答案最后乘上2^n即可. 那么需要考虑1所在的区间与另一个区间合并时,另一个区间的最小值不能为特殊的. 直接求解很难,考虑容斥,钦定在哪几个位置必定 ...
- ARC093F Dark Horse 【容斥,状压dp】
题目链接:gfoj 神仙计数题. 可以转化为求\(p_1,p_2,\ldots,p_{2^n}\),使得\(b_i=\min\limits_{j=2^i+1}^{2^{i+1}}p_j\)都不属于\( ...
- 【arc093f】Dark Horse(容斥原理,动态规划,状态压缩)
[arc093f]Dark Horse(容斥原理,动态规划,状态压缩) 题面 atcoder 有 \(2^n\) 名选手,编号为 \(1\) 至 \(2^n\) .现在这 \(2^n\) 名选手将进行 ...
- ARC 093 F Dark Horse 容斥 状压dp 组合计数
LINK:Dark Horse 首先考虑1所在位置. 假设1所在位置在1号点 对于此时剩下的其他点的方案来说. 把1移到另外一个点 对于刚才的所有方案来说 相对位置不变是另外的方案. 可以得到 1在任 ...
- Atcoder Regular Contest 093 D - Dark Horse(组合数学+状压 dp)
Atcoder 题面传送门 & 洛谷题面传送门 常规题,简单写写罢((( 首先 \(1\) 的位置是什么不重要,我们不妨钦定 \(1\) 号选手最初就处在 \(1\) 号位置,最后答案乘个 \ ...
- ARC093 F - Dark Horse
https://atcoder.jp/contests/arc093/tasks/arc093_d 题解 先钦定\(1\)号站在第一个位置上,那么他第一轮要和\((2)\)打,第二轮要和\((3,4) ...
- ARC093 F Dark Horse——容斥
题目:https://atcoder.jp/contests/arc093/tasks/arc093_d #include<cstdio> #include<cstring> ...
- AtCoder Regular Contest 093
AtCoder Regular Contest 093 C - Traveling Plan 题意: 给定n个点,求出删去i号点时,按顺序从起点到一号点走到n号点最后回到起点所走的路程是多少. \(n ...
随机推荐
- 读取hdfs目录,并在web页面上展示文件里的内容
最终效果图 目录树实体类: /** * @Author: DaleyZou * @Description: hdfs 目录结构的实体类,用于展示目录树的支撑操作 * @Date: Created in ...
- 【例题收藏】◇例题·II◇ Berland and the Shortest Paths
◇例题·II◇ Berland and the Shortest Paths 题目来源:Codeforce 1005F +传送门+ ◆ 简单题意 给定一个n个点.m条边的无向图.保证图是连通的,且m≥ ...
- python逻辑运算(not,and,or)总结
逻辑运算 1.在没有()的情况下not优先级高于and,and优先级高于or,即优先级关系为()>not>and>or,同一优先级从左往右计算 总结:a or b : 如果a = 0 ...
- 用servlet设计OA管理系统时遇到问题
如果不加单引号会使得除变量和int类型的值不能传递 转发和重定向的区别 转发需要填写完整路径,重定向只需要写相对路径.原因是重定向是一次请求之内已经定位到了服务器端,转发则需要两次请求每次都需要完整的 ...
- Linux进程通信之匿名管道
进程间的通信方式 进程间的通信方式包括,管道.共享内存.信号.信号量.消息队列.套接字. 进程间通信的目的 进程间通信的主要目的是:数据传输.数据共享.事件通知.资源共享.进程控制等. 进程间通信之管 ...
- C#基础-面向对象-继承
继承 新建一个基类 对Person类3个字段进行重构->封装字段 效果如下: public string Name { get => name; set => name = valu ...
- LEA指令与MOV指令区别
Tips: LEA指令与MOV指令的区别: ① MOV指令是 数据 传送指令-------传送数据 LEA指令是 有效地址 传送指令-------取偏移地址 ② MOV OPRD1 ...
- php红包算法函数[优化]
php红包算法 <?php header("Content-Type: text/html;charset=utf-8");//输出不乱码,你懂的 $total=10000; ...
- Lucene简单总结
Lucene API Document Document:文档对象,是一条原始数据 文档编号 文档内容 1 谷歌地图之父跳槽FaceBook 2 谷歌地图之父加盟FaceBook 3 谷歌地图创始人拉 ...
- php 多维数组相同键值处理合并
一.前言 在实际情况中,有时需要针对多维数组相同键值作相应的处理(四则运算.比较大小等)后才能够使用到实际情况中,现给出三维数组(多维数组可相应拓展)任意多个相同键值处理的函数,以备查阅. 二.代码 ...