题目描述

$\sigma_k(n) = \sum_{d | n} d ^ k$​

求 $\sum_{i=1}^n\sigma_k(i)$ 的值对 109 取模的结果。

输入格式

第一行两个正整数 n,k 。

输出格式

第一行输出答案。

样例

输入样例

5 2

输出样例

63

数据范围与提示

对于 100% 的数据,1≤n,k≤1077​​ 。

Solution:

  本题ZYYS。。。

  直接枚举显然不行,我们考虑改为求$n$的某一因子$d$在整个函数中的贡献是多少。

  套上数论分块的思想,一个因子$d$对式子的贡献是$\lfloor{\frac{n}{d}}\rfloor\times d^k$。

  这样我们需要处理的就是$d^k$,直接$O(n\log k)$快速幂求出每个因子的幂是肯定不行的,因为$n$是$10^7$,直接会T。

  那么还是考虑优化,我们发现,每个数都能唯一分解,而在求幂时会有重复计算的质因子幂。于是,我们考虑线筛,这样就可以用每个数的最小质因子幂去算它的幂了,那么整个过程只会对$n\leq 10^7$内的质数进行快速幂,最后复杂度就成了$\sqrt n \log k$,完全可行。

  所以最后就只需再$O(n)$扫一遍因子累加贡献求和就好了。

代码:

#include<iostream>
#define il inline
#define ll long long
#define For(i,a,b) for(int (i)=(a);(i)<=(b);(i)++)
#define Bor(i,a,b) for(int (i)=(b);(i)>=(a);(i)--)
#define Max(a,b) ((a)>(b)?(a):(b))
#define Min(a,b) ((a)>(b)?(b):(a)) using namespace std;
const int N=1e7,mod=1e9+;
int prime[N+],ans,cnt,n,k,sum[N+];
bool isprime[N+]; il int fast(ll s,ll k){
ll ans=;
while(k){
if(k&)ans=ans*s%mod;
k>>=;
s=s*s%mod;
}
return ans;
} il void init(){
sum[]=;
For(i,,n+) {
if(!isprime[i]) prime[++cnt]=i,sum[i]=fast(i,k);
for(int j=;j<=cnt&&prime[j]*i<=n+;j++){
isprime[prime[j]*i]=;
sum[prime[j]*i]=sum[i]*1ll*sum[prime[j]]%mod;
if(i%prime[j]==)break;
}
}
} int main(){
ios::sync_with_stdio();
cin>>n>>k;
init();
For(i,,n) ans=(ans+1ll*(n/i)*sum[i])%mod;
cout<<ans;
return ;
}

LOJ #124. 除数函数求和 1的更多相关文章

  1. Loj #124. 除数函数求和

    链接:https://loj.ac/problem/124 就是筛一下积性函数. #include<bits/stdc++.h> #define ll long long #define ...

  2. LiberOJ #124. 除数函数求和 【整除分块】

    一.题目 #124. 除数函数求和 二.分析 比较好的一题,首先我们要对题目和样例进行分析,明白题目的意思. 由于对于每一个$d$,它所能整除的数其实都是定的,且数量是$ \lfloor \frac{ ...

  3. Loj #125. 除数函数求和(2)

    link : https://loj.ac/problem/125 分块calc即可. #include<bits/stdc++.h> #define ll long long using ...

  4. loj124 除数函数求和 1

    loj124 除数函数求和 1 https://loj.ac/problem/124 $\sum_{i=1}^n(\sum_{d|i}d^k)=\sum_{i=1}^n(i^k*{\lfloor}{\ ...

  5. loj125 除数函数求和 2

    https://loj.ac/problem/125 $原式=2\sum_{i=1}^n(i^2*{\lfloor}{\frac{n}{i}}{\rfloor})+3\sum_{i=1}^n(i*{\ ...

  6. 【LOJ#572】Misaka Network 与求和(莫比乌斯反演,杜教筛,min_25筛)

    [LOJ#572]Misaka Network 与求和(莫比乌斯反演,杜教筛,min_25筛) 题面 LOJ \[ans=\sum_{i=1}^n\sum_{j=1}^n f(gcd(i,j))^k\ ...

  7. Loj #528. 「LibreOJ β Round #4」求和 (莫比乌斯反演)

    题目链接:https://loj.ac/problem/528 题目:给定两个正整数N,M,你需要计算ΣΣu(gcd(i,j))^2 mod 998244353 ,其中i属于[1,N],j属于[1,M ...

  8. LOJ #2058「TJOI / HEOI2016」求和

    不错的推柿子题 LOJ #2058 题意:求$\sum\limits_{i=0}^n\sum\limits_{j=0}^nS(i,j)·2^j·j!$其中$ S(n,m)$是第二类斯特林数 $ Sol ...

  9. BZOJ5291/洛谷P4458/LOJ#2512 [Bjoi2018]链上二次求和 线段树

    原文链接http://www.cnblogs.com/zhouzhendong/p/9031130.html 题目传送门 - LOJ#2512 题目传送门 - 洛谷P4458 题目传送门 - BZOJ ...

随机推荐

  1. io与Nio的区别及实用场景

    https://blog.csdn.net/wodeyuer125/article/details/39475207

  2. JavaScript的变量命名规则和关键字的介绍

    变量的名字 就像 人的名字一样,不能乱起.          你的代码不是只有你一个人看,变量既然是名字,那就这个名字就要有特殊的意义:     举个栗子:翠花,我们能从这个名字中得到什么信息?(这个 ...

  3. codeforces757E. Bash Plays with Functions(狄利克雷卷积 积性函数)

    http://codeforces.com/contest/757/problem/E 题意 Sol 非常骚的一道题 首先把给的式子化一下,设$u = d$,那么$v = n / d$ $$f_r(n ...

  4. 【期望dp 质因数分解】cf1139D. Steps to One

    有一种组合方向的考虑有没有dalao肯高抬啊? 题目大意 有一个初始为空的数组$a$,按照以下的流程进行操作: 在$1\cdots m$中等概率选出一个数$x$并添加到$a$的末尾 如果$a$中所有元 ...

  5. bootloader svc 模式

    bootloader 和操作系统都是工作在svc模式下 /* * set the cpu to SVC32 mode */ mrs r0,cpsr bic r0,r0,#0x1f orr r0,r0, ...

  6. 【转载】CString,string,char*之间的转换

    本文转自 <> 这三种类型各有各的优点,比如CString比较灵活,是基于MFC常用的类型,安全性也最高,但可移植性最差.string是使用STL时必不可少的类型,所以是做工程时必须熟练掌 ...

  7. lan口和wan口的配置

    路由器的一排网线接口,分为 lan 和 wan .但不是谁生来就是lan口 或者 wan口 . 也没有谁规定就一个wan口 就只有一个. 网口就是网口, 决定它是 lan口 还是 wan口 ,是由我们 ...

  8. C++基础 对象的管理——单个对象的管理

    1. 为什么要有构造函数和析构函数 面向对象的思想是从生活中来,手机.车出厂时,是一样的. 这些对象都是被初始化后才上市的,初始化是对象普遍存在的一个状态. 普通方案: 对每个类提供一个 init 函 ...

  9. 找回被丢弃怎么找都找不回来的git中的commit

    崩溃的一天,打算提代码走人,结果切分支之后,commit丢了= =,找了三个多小时 接下来分享下如何找回丢失的commit的 打开项目所在位置,打开git bash,在gitBASH中输入 git f ...

  10. 云心出岫——Splay Tree

    (多图预警!!!建议在WI-FI下观看) 之前我们谈论过AVL树,这是一种典型适度平衡的二叉搜索树,成立条件是保持平衡因子在[-1,1]的范围内,这个条件已经是针对理想平衡做出的一个妥协了,但依然显得 ...