Coursera machine learning 第二周 quiz 答案 Linear Regression with Multiple Variables
https://www.coursera.org/learn/machine-learning/exam/7pytE/linear-regression-with-multiple-variables
1。
Suppose m=4 students have taken some class, and the class had a midterm exam and a final exam. You have collected a dataset of their scores on the two exams, which is as follows:
midterm exam |
(midterm exam)2 |
final exam |
89 |
7921 |
96 |
72 |
5184 |
74 |
94 |
8836 |
87 |
69 |
4761 |
78 |
You'd like to use polynomial regression to predict a student's final exam score from their midterm exam score. Concretely, suppose you want to fit a model of the form hθ(x)=θ0+θ1x1+θ2x2, where x1 is the midterm score and x2 is (midterm score)2. Further, you plan to use both feature scaling (dividing by the "max-min", or range, of a feature) and mean normalization.
What is the normalized feature x2(2)? (Hint: midterm = 72, final = 74 is training example 2.) Please round off your answer to two decimal places and enter in the text box below.
答案: -0.37
平均值 :(7921+5184+8836+4761)/4 = 6675.5
Max-Min: 8836-4761=4075
x=(xn-平均值)/(Max-Min)
training example 2 (5184-6675.5)/4075=-0.37
2。
You run gradient descent for 15 iterations
with α=0.3 and compute J(θ) after each
iteration. You find that the value of J(θ) increases over
time. Based on this, which of the following conclusions seems
most plausible?
α=0.3 is an effective choice of learning rate.
Rather than use the current value of α, it'd be more promising to try a larger value of α (say α=1.0).
Rather than use the current value of α, it'd be more promising to try a smaller value of α (say α=0.1).
答案:B. Rather than use the current value of α, it'd be more promising to try a larger value of α (say α=1.0).
a越大下降越快,a越小下降越慢。
3。
Suppose you have m=23 training examples with n=5 features (excluding the additional all-ones feature for the intercept term, which you should add). The normal equation is θ=(XTX)−1XTy. For the given values of m and n, what are the dimensions of θ, X, and y in this equation?
X is 23×6, y is 23×6, θ is 6×6
X is 23×5, y is 23×1, θ is 5×5
X is 23×6, y is 23×1, θ is 6×1
X is 23×5, y is 23×1, θ is 5×1
答案:C. X is 23×6, y is 23×1, θ is 6×1
X n+1 列 , y 1 列 , θ n+1 行
4。
Suppose you have a dataset with m=50 examples and n=15 features for each example. You want to use multivariate linear regression to fit the parameters θ to our data. Should you prefer gradient descent or the normal equation?
Gradient descent, since it will always converge to the optimal θ.
The normal equation, since it provides an efficient way to directly find the solution.
Gradient descent, since (XTX)−1 will be very slow to compute in the normal equation.
The normal equation, since gradient descent might be unable to find the optimal θ.
答案: B. The normal equation, since it provides an efficient way to directly find the solution.
比较梯度下降与normal equation
梯度下降需要Feature Scaling;normal equation 简单方便不需Feature Scaling。
normal equation 时间复杂度较大,适用于Feature数量较少的情况。
5。
Which of the following are reasons for using feature scaling?
It speeds up solving for θ using the normal equation.
It prevents the matrix XTX (used in the normal equation) from being non-invertable (singular/degenerate).
It speeds up gradient descent by making it require fewer iterations to get to a good solution.
It is necessary to prevent gradient descent from getting stuck in local optima.
答案 :C. It speeds up gradient descent by making it require fewer iterations to get to a good solution.
上一题也考到这个点:normal equation 不需要 Feature Scaling,排除AB, 特征缩放减少迭代数量,加快梯度下降,然而不能防止梯度下降陷入局部最优。
Coursera machine learning 第二周 quiz 答案 Linear Regression with Multiple Variables的更多相关文章
- Coursera machine learning 第二周 编程作业 Linear Regression
必做: [*] warmUpExercise.m - Simple example function in Octave/MATLAB[*] plotData.m - Function to disp ...
- Coursera machine learning 第二周 quiz 答案 Octave/Matlab Tutorial
https://www.coursera.org/learn/machine-learning/exam/dbM1J/octave-matlab-tutorial Octave Tutorial 5 ...
- [Machine Learning (Andrew NG courses)]IV.Linear Regression with Multiple Variables
watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvenFoXzE5OTE=/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA ...
- 【原】Coursera—Andrew Ng机器学习—Week 2 习题—Linear Regression with Multiple Variables 多变量线性回归
Gradient Descent for Multiple Variables [1]多变量线性模型 代价函数 Answer:AB [2]Feature Scaling 特征缩放 Answer:D ...
- Machine Learning – 第2周(Linear Regression with Multiple Variables、Octave/Matlab Tutorial)
Machine Learning – Coursera Octave for Microsoft Windows GNU Octave官网 GNU Octave帮助文档 (有900页的pdf版本) O ...
- Stanford机器学习---第二讲. 多变量线性回归 Linear Regression with multiple variable
原文:http://blog.csdn.net/abcjennifer/article/details/7700772 本栏目(Machine learning)包括单参数的线性回归.多参数的线性回归 ...
- Linear regression with multiple variables(多特征的线型回归)算法实例_梯度下降解法(Gradient DesentMulti)以及正规方程解法(Normal Equation)
,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, , ...
- 机器学习 (二) 多变量线性回归 Linear Regression with Multiple Variables
文章内容均来自斯坦福大学的Andrew Ng教授讲解的Machine Learning课程,本文是针对该课程的个人学习笔记,如有疏漏,请以原课程所讲述内容为准.感谢博主Rachel Zhang 的个人 ...
- 【原】Coursera—Andrew Ng机器学习—课程笔记 Lecture 4_Linear Regression with Multiple Variables 多变量线性回归
Lecture 4 Linear Regression with Multiple Variables 多变量线性回归 4.1 多维特征 Multiple Features4.2 多变量梯度下降 Gr ...
随机推荐
- VS2010免费插件
用惯了VC助手后,突然用裸的VS真不习惯... 1. 在Visual Studio 2010中,我们可以通过在任何代码文件中使用快捷键“Ctrl + ,”(Ctrl键加上逗号键)调出“Quick Se ...
- 在Android中解决内存溢出 – OutOfMemoryError
原文链接:http://riggaroo.co.za/fixing-memory-leaks-in-android-outofmemoryerror/ 注:本文在原文基础上在如何判断内存是否泄露方面进 ...
- mac mysql命令行
https://www.cnblogs.com/lonecloud/p/5841522.html mac下使用mysql控制台命令行 命令行中输入 open .bash_profile 然后将 a ...
- java.lang.NoSuchFieldError:INSTANCE
Java.lang.NoSuchFieldError: INSTANCE异常,可能是包重复了. 我遇到的情况是maven里引入了一个JAR,而我又在lib里面引入了这个jar,并且版本还不相同,就出了 ...
- python git log
# -*- coding: utf-8 -*- # created by vince67 Feb.2014 # nuovince@gmail.com import re import os imp ...
- redis-cli使用密码登录
redis-cli使用密码登录 注意IP地址要写正确! 学习了: https://blog.csdn.net/lsm135/article/details/52932896 https://blog. ...
- 基于Storyboard的创建多分支NavigationController的方法
如果遇到本文图片只展示一半的情况,多数情况下刷新一下浏览器即可 遇到的问题 我在写程序的时候碰到这样一个简单的需求,用户点击"我的XX"这样的功能时候,需要判断当前用户是否已经登录 ...
- 命令行设置IE代理
IE代理可以在注册表中设置,所以用DOS修改注册表,可以达到目的.方法一:注册表文件:REGEDIT4[HKEY_CURRENT_USER\Software\Microsoft\Windows\Cur ...
- android实现免费短信验证
代码地址如下:http://www.demodashi.com/demo/12541.html 前言 获取短信验证码的的第三方很多,今天介绍一个获取短信验证码的demo,它有以下优势 短信到达率几乎1 ...
- MongoDB在Win10下的安装
原文地址:http://blog.csdn.net/polo_longsan/article/details/52430539 1.下载MongoDB在windows下的安装文件 首先去官网https ...