快速沃尔变换 FWT
P4717 【模板】快速沃尔什变换
#include<bits/stdc++.h>
using namespace std;
#define int long long
#define sc(x) scanf("%lld",&(x));
#define si signed
const int maxn=<<+;
int A[maxn];
int B[maxn];
int C[maxn];
#define mod 998244353
#define inv2 ((mod+1)/2)
int n;
int t;
void FWT_or(int *C,int op)
{
for(int i=;i<n;i<<=){
for(int p=i<<,j=;j<n;j+=p){
for(int k=;k<i;k++){
if(op==)C[i+j+k]=(C[i+j+k]+C[j+k])%mod;
if(op==-)C[i+j+k]=(C[i+j+k]-C[j+k]+mod)%mod;
}
}
}
}
void FWT_and(int *C,int op)
{
for(int i=;i<n;i<<=){
for(int p=i<<,j=;j<n;j+=p){
for(int k=;k<i;k++){
if(op==)C[j+k]=(C[i+j+k]+C[j+k])%mod;
if(op==-)C[j+k]=(C[j+k]+mod-C[i+j+k])%mod;
}
}
}
}
void FWT_xor(int *C,int op)
{
for(int i=;i<n;i<<=){
for(int p=i<<,j=;j<n;j+=p){
for(int k=;k<i;k++){
int x=C[j+k],y=C[i+j+k];
C[j+k]=(x+y)%mod;
C[j+k+i]=(x-y+mod)%mod;
if(op==-){
C[j+k]=C[j+k]*inv2%mod;
C[j+k+i]=C[j+k+i]*inv2%mod;
}
}
}
}
}
si main()
{ sc(t);
n=(<<t);
for(int i=;i<n;i++){
sc(A[i]);
}
for(int i=;i<n;i++){
sc(B[i]);
}
FWT_or(A,);FWT_or(B,);
for(int i=;i<n;i++){
C[i]=(A[i]*B[i])%mod;
}
FWT_or(A,-);FWT_or(B,-);
FWT_or(C,-);
for(int i=;i<n;i++){
cout<<C[i]<<' ';
}
cout<<'\n';
FWT_and(A,);FWT_and(B,);
for(int i=;i<n;i++){
C[i]=(A[i]*B[i])%mod;
}
FWT_and(A,-);FWT_and(B,-);
FWT_and(C,-);
for(int i=;i<n;i++){
cout<<C[i]<<' ';
}
cout<<'\n';
FWT_xor(A,);FWT_xor(B,);
for(int i=;i<n;i++){
C[i]=(A[i]*B[i])%mod;
}
FWT_xor(A,-);FWT_xor(B,-);
FWT_xor(C,-);
for(int i=;i<n;i++){
cout<<C[i]<<' ';
}
cout<<'\n'; }
快速沃尔变换 FWT的更多相关文章
- 集合并卷积的三种求法(分治乘法,快速莫比乌斯变换(FMT),快速沃尔什变换(FWT))
也许更好的阅读体验 本文主要内容是对武汉市第二中学吕凯风同学的论文<集合幂级数的性质与应用及其快速算法>的理解 定义 集合幂级数 为了更方便的研究集合的卷积,引入集合幂级数的概念 集合幂级 ...
- 快速沃尔什变换(FWT) 与 快速莫比乌斯变换 与 快速沃尔什变换公式推导
后面的图片将会告诉: 如何推出FWT的公式tf 如何推出FWT的逆公式utf 用的是设系数,求系数的方法! ============================================== ...
- 知识点简单总结——FWT(快速沃尔什变换),FST(快速子集变换)
知识点简单总结--FWT(快速沃尔什变换),FST(快速子集变换) 闲话 博客园的markdown也太傻逼了吧. 快速沃尔什变换 位运算卷积 形如 $ f[ i ] = \sum\limits_{ j ...
- FFT【快速傅里叶变换】FWT【快速沃尔什变换】
实在是 美丽的数学啊 关于傅里叶变换的博客 讲的很细致 图片非常易于理解http://blog.jobbole.com/70549/ 大概能明白傅里叶变换是干吗的了 但是还是不能明白为什么用傅里叶变换 ...
- 快速沃尔什变换&快速莫比乌斯变换小记
u1s1 距离省选只剩 5 days 了,现在学新算法真的合适吗(( 位运算卷积 众所周知,对于最普通的卷积 \(c_i=\sum\limits_{j+k=i}a_jb_k\),\(a_jb_k\) ...
- 为什么要进行傅立叶变换?傅立叶变换究竟有何意义?如何用Matlab实现快速傅立叶变换
写在最前面:本文是我阅读了多篇相关文章后对它们进行分析重组整合而得,绝大部分内容非我所原创.在此向多位原创作者致敬!!!一.傅立叶变换的由来关于傅立叶变换,无论是书本还是在网上可以很容易找到关于傅立叶 ...
- 离散傅立叶变换与快速傅立叶变换(DFT与FFT)
自从去年下半年接触三维重构以来,听得最多的词就是傅立叶变换,后来了解到这个变换在图像处理里面也是重点中的重点. 本身自己基于高数知识的理解是傅立叶变换是将一个函数变为一堆正余弦函数的和的变换.而图像处 ...
- 快速傅里叶变换 & 快速数论变换
快速傅里叶变换 & 快速数论变换 [update 3.29.2017] 前言 2月10日初学,记得那时好像是正月十五放假那一天 当时写了手写版的笔记 过去近50天差不多忘光了,于是复习一下,具 ...
- 快速傅立叶变换(FFT)算法
已知多项式f(x)=a0+a1x+a2x2+...+am-1xm-1, g(x)=b0+b1x+b2x2+...+bn-1xn-1.利用卷积的蛮力算法,得到h(x)=f(x)g(x),这一过程的时间复 ...
随机推荐
- 基于XML配置Spring的自动装配
一.了解Spring自动装配的方式 采用传统的XML方式配置Bean组件的关键代码如下所示 <bean id="userMapper" class="edu.cn. ...
- Being a Good Boy in Spring Festival
Being a Good Boy in Spring Festival Problem Description 一年在外 父母时刻牵挂春节回家 你能做几天好孩子吗寒假里尝试做做下面的事情吧 陪妈妈逛一 ...
- hadoop批量命令脚本xrsync.sh传输脚本
1.xrsync.sh脚本 #!/bin/bash if [[ $# -lt 1 ]] ; then echo no params ; exit ; fi p=$1 #echo p=$p dir=`d ...
- 普通交叉验证(OCV)和广义交叉验证(GCV)
普通交叉验证OCV OCV是由Allen(1974)在回归背景下提出的,之后Wahba和Wold(1975)在讨论 了确定多项式回归中多项式次数的背景,在光滑样条背景下提出OCV. Craven和Wa ...
- wex5 如何导包
wex5中 导jar包 要先把jar文件放在: E:\WeX5\runtime\BaasServer\WEB-INF\lib目录中(我wex5放的是E盘) 点击项目 --> 属性 --> ...
- chrom插件1
本文是稀土掘金投稿,虽然其中有倔金的私货,是篇推广文,但我看过后认为内容确实不错,有些好插件还是第一次知道,对我很有帮助,考虑过后还是决定推荐给大家,最近我比较关注各种提高开发效率的工具与技巧,今后看 ...
- elementui 之el-pagination爬坑,属性pager-count的设定
我想设置总页数为10页,页码条总是显示两个页码,其余省略号显示,我选择了pager-count,如下: <el-pagination @size-change="handleSizeC ...
- 从分析攻击方式来谈如何防御DDoS攻击
DDoS攻击的定义: DDoS攻击全称——分布式拒绝服务攻击,是网络攻击中非常常见的攻击方式.在进行攻击的时候,这种方式可以对不同地点的大量计算机进行攻击,进行攻击的时候主要是对攻击的目标发送超过其处 ...
- zabbix发送报警的脚本
zabbix报警媒介:自定义脚本Custom alertscripts 邮件报警准备工作:安装sendEmail zabbix-server 的 配置文件 /etc/zabbix/zabbix_ser ...
- 将shell脚本的执行过程和执行结果导入到log文件中
[root@localhost scripts]# vim ping.sh #!/bin/bash set -x ##分步执行 exec &> /tmp/log.txt ##脚本执行的过 ...