题意 : 在一个圆形操场的四周摆放N堆石子,现要将石子有次序地合并成一堆.规定每次只能选相邻的2堆合并成新的一堆,并将新的一堆的石子数,记为该次合并的得分。试设计出1个算法,计算出将N堆石子合并成1堆的最小得分和最大得分。

分析 : 

有大佬给出了四边形不等式优化........

发现并不会,于是开始学习区间DP的写法

对于某一个特定的区间 (i, j) 其合并成一个石子是从

某两个属于这个区间且连续不相交区间合并而来

即假设有断点 k 则 (i, j) = (i, k) + (k+1, j) + Sum(i, j)

这里定义 Sum(i, j) 为 i 到 j 这个区间石子的总和、前缀和可实现

只要枚举断点就可以知道 (i, j) 的最优值是多少了

定义 dp[i][j] = 区间 i 到 j 的石子合并代价的最值

转移方程就是枚举断点 dp[i][j] = dp[i][k] + dp[k+1][j] + Sum(i, j)

但是这个有一个坑,如果你用三重循环,分别表示

区间开头 i、区间结尾 j、区间断点 k 来进行 状态转移

这样是错误的,因为 dp[k+1][j] 在这样的循环下是还未确定的

所以有个技巧就是将一重循环变成区间长度,即

区间长度 len、区间开头 i、区间断点 k

还有一个问题就是,题目给出来的石头是链装的

只要“断环为链”即复制一份黏到末尾就行了

#include<bits/stdc++.h>
using namespace std;
const int INF = 0x3f3f3f3f;
;
int dp1[maxn][maxn], dp2[maxn][maxn];
int PreSum[maxn];
int arr[maxn];
int N;

int main(void)
{
    scanf("%d", &N);

    memset(dp1, , sizeof(dp1));
    memset(dp2, , sizeof(dp2));
    memset(PreSum, , sizeof(PreSum));

    ; i<=N; i++){
        scanf("%d", &arr[i]);
        arr[i+N] = arr[i];
    }

    ; i<=(N<<); i++)
        PreSum[i] = PreSum[i-] + arr[i];

    ; len<=N; len++){
        ; i<=(N<<)-len+; i++){
            ;
            , MM = INF;
            for(int k=i; k<j; k++){
                MM = min(MM, dp1[i][k]+dp1[k+][j]+PreSum[j]-PreSum[i-]);
                MX = max(MX, dp2[i][k]+dp2[k+][j]+PreSum[j]-PreSum[i-]);
            }
            dp1[i][j] = MM;
            dp2[i][j] = MX;
        }
    }

    , MM = INF;
    ; i<=N; i++){
        MM = min(MM, dp1[i][i+N-]);
        MX = max(MX, dp2[i][i+N-]);
    }

    printf("%d\n%d\n", MM, MX);
    ;
}

洛谷 P1080 石子合并 ( 区间DP )的更多相关文章

  1. 洛谷P1880 石子合并(区间DP)(环形DP)

    To 洛谷.1880 石子合并 题目描述 在一个园形操场的四周摆放N堆石子,现要将石子有次序地合并成一堆.规定每次只能选相邻的2堆合并成新的一堆,并将新的一堆的石子数,记为该次合并的得分. 试设计出1 ...

  2. 洛谷 P1880 [NOI1995] 石子合并(区间DP)

    传送门 https://www.cnblogs.com/violet-acmer/p/9852294.html 题解: 这道题是石子合并问题稍微升级版 这道题和经典石子合并问题的不同在于,经典的石子合 ...

  3. 洛谷P1880 石子合并(环形石子合并 区间DP)

    题目描述 在一个圆形操场的四周摆放N堆石子,现要将石子有次序地合并成一堆.规定每次只能选相邻的2堆合并成新的一堆,并将新的一堆的石子数,记为该次合并的得分. 试设计出1个算法,计算出将N堆石子合并成1 ...

  4. 经典DP 洛谷p1880 石子合并

    https://www.luogu.org/problemnew/show/P1880 题目 题目描述 在一个圆形操场的四周摆放N堆石子,现要将石子有次序地合并成一堆.规定每次只能选相邻的2堆合并成新 ...

  5. 石子合并 区间dp模板

    题意:中文题 Description 在操场上沿一直线排列着 n堆石子.现要将石子有次序地合并成一堆.规定每次只能选相邻的两堆石子合并成新的一堆, 并将新的一堆石子数记为该次合并的得分.允许在第一次合 ...

  6. HDU4632 Poj2955 括号匹配 整数划分 P1880 [NOI1995]石子合并 区间DP总结

    题意:给定一个字符串 输出回文子序列的个数    一个字符也算一个回文 很明显的区间dp  就是要往区间小的压缩! #include<bits/stdc++.h> using namesp ...

  7. 洛谷 P1880 石子合并

    题目描述 在一个圆形操场的四周摆放N堆石子,现要将石子有次序地合并成一堆.规定每次只能选相邻的2堆合并成新的一堆,并将新的一堆的石子数,记为该次合并的得分. 试设计出1个算法,计算出将N堆石子合并成1 ...

  8. 洛谷P1040 加分二叉树(区间dp)

    P1040 加分二叉树 题目描述 设一个n个节点的二叉树tree的中序遍历为(1,2,3,…,n),其中数字1,2,3,…,n为节点编号.每个节点都有一个分数(均为正整数),记第i个节点的分数为di, ...

  9. 石子合并 区间DP模板题

    题目链接:https://vjudge.net/problem/51Nod-1021 题意 N堆石子摆成一条线.现要将石子有次序地合并成一堆.规定每次只能选相邻的2堆石子合并成新的一堆,并将新的一堆石 ...

随机推荐

  1. Akka系列(八):Akka persistence设计理念之CQRS

    前言........ 这一篇文章主要是讲解Akka persistence的核心设计理念,也是CQRS(Command Query Responsibility Segregation)架构设计的典型 ...

  2. python 并发编程 多线程 线程理论

    操作系统比作一家公司,进程相当于一个部门  线程相当于一个部门的成员 进程之间是互相隔离的 一 什么是线程 1. 每启动一个进程 至少有一个线程,  在传统操作系统中,每个进程有一个地址空间,而且默认 ...

  3. Linux c实现一个tcp文件服务器和客户端

    总体需求:编写tcp文件服务器和客户端.客户端可以上传和下载文件. ================================================ 分解需求 客户端功能描述: 1)要 ...

  4. 第七周课程总结&实验报考(五)

    第七周课程总结&实验报考(五) 实验四 类的继承 实验目的: 1.理解抽象类与接口的使用: 2.了解包的作用,掌握包的设计方法. 实验要求: 1.掌握使用抽象类的方法. 2.掌握使用系统接口的 ...

  5. 4、android studio打包的时候遇到的问题

    那就去掉该签名 但是如果使用generated apk的话,则是不会去调用build.gradle文件的,需要使用gradle命令来打包 https://blog.csdn.net/cencibuqi ...

  6. [转帖]vCenter 计划任务.

    vSphere5.0实用小技巧-DPM计划任务 2013年05月12日 23:00:09 weixin_34185320 阅读数:9 https://blog.csdn.net/weixin_3418 ...

  7. 创建一个py文件并运行

    在 Linux 中,可以直接用vim 或者 vi 来编辑一个 python 文件 vim hello.py 进入编辑页面 #coding:utf-8 print("你好") (因为 ...

  8. Executor框架(转)

    摘要:        Executor作为灵活且强大的异步执行框架,其支持多种不同类型的任务执行策略,提供了一种标准的方法将任务的提交过程和执行过程解耦开发,基于生产者-消费者模式,其提交任务的线程相 ...

  9. google浏览器切换成中文

    新浪下载地址:http://down.tech.sina.com.cn/content/40975.html 默认字体好像是西班牙语 1.浏览器地址chrome://settings/language ...

  10. HTTP常用状态码详解

    HTTP状态码: HTTP定义遵循一条规则:所有状态码的第一个数字代表了响应的状态.1表示消息:2表示成功:3表示重定向:4表示请求错误:5.6表示服务器错误.如下图: 1xx: 这一类型的状态码,代 ...