YUV格式详解【转】
YUV是指亮度参量和色度参量分开表示的像素格式,而这样分开的好处就是不但可以避免相互干扰,还可以降低色度的采样率而不会对图像质量影响太大。YUV是一个比较笼统地说法,针对它的具体排列方式,可以分为很多种具体的格式。转载一篇对yuv格式解释的比较清楚地文章,也可以直接参考微软的那篇文章。
对于YUV格式,比较原始的讲解是MPEG-2 VIDEO部分的解释,当然后来微软有一个比较经典的解释,中文的大多是翻译这篇文章的。文章来源:http://msdn.microsoft.com/en-us/library/aa904813(VS.80).aspx
这里转载有人已经翻译过的,个人认为已经翻译的很不错了,遂放弃翻译。
http://hondrif82q.spaces.live.com/blog/cns!776E82726DE60562!177.entry
http://hondrif82q.spaces.live.com/blog/cns!776E82726DE60562!178.entry
YUV格式解析1(播放器——project2)
YUV 采样
YUV 的优点之一是,色度频道的采样率可比 Y 频道低,同时不会明显降低视觉质量。有一种表示法可用来描述 U 和 V 与 Y 的采样频率比例,这个表示法称为 A:B:C 表示法:
• |
4:4:4 表示色度频道没有下采样。 |
• |
4:2:2 表示 2:1 的水平下采样,没有垂直下采样。对于每两个 U 样例或 V 样例,每个扫描行都包含四个 Y 样例。 |
• |
4:2:0 表示 2:1 的水平下采样,2:1 的垂直下采样。 |
• |
4:1:1 表示 4:1 的水平下采样,没有垂直下采样。对于每个 U 样例或 V 样例,每个扫描行都包含四个 Y 样例。与其他格式相比,4:1:1 采样不太常用,本文不对其进行详细讨论。 |
图 1 显示了 4:4:4 图片中使用的采样网格。灯光样例用叉来表示,色度样例则用圈表示。
图 1. YUV 4:4:4 样例位置
4:2:2 采样的这种主要形式在 ITU-R Recommendation BT.601 中进行了定义。图 2 显示了此标准定义的采样网格。
图 2. YUV 4:2:2 样例位置
4:2:0 采样有两种常见的变化形式。其中一种形式用于 MPEG-2 视频,另一种形式用于 MPEG-1 以及 ITU-T recommendations H.261 和 H.263。图 3 显示了 MPEG-1 方案中使用的采样网格,图 4 显示了 MPEG-2 方案中使用的采样网格。
图 3. YUV 4:2:0 样例位置(MPEG-1 方案)
图 4. YUV 4:2:0 样例位置(MPEG-2 方案)
与 MPEG-1 方案相比,在 MPEG-2 方案与为 4:2:2 和 4:4:4 格式定义的采样网格之间进行转换更简单一些。因此,在 Windows 中首选 MPEG-2 方案,应该考虑将其作为 4:2:0 格式的默认转换方案。
表面定义
本节讲述推荐用于视频呈现的 8 位 YUV 格式。这些格式可以分为几个类别:
• |
4:4:4 格式,每像素 32 位 |
• |
4:2:2 格式,每像素 16 位 |
• |
4:2:0 格式,每像素 16 位 |
• |
4:2:0 格式,每像素 12 位 |
首先,您应该理解下列概念,这样才能理解接下来的内容:
• |
表面原点。对于本文讲述的 YUV 格式,原点 (0,0) 总是位于表面的左上角。 |
• |
跨距。表面的跨距,有时也称为间距,指的是表面的宽度,以字节数表示。对于一个表面原点位于左上角的表面来说,跨距总是正数。 |
• |
对齐。表面的对齐是根据图形显示驱动程序的不同而定的。表面始终应该 DWORD 对齐,就是说,表面中的各个行肯定都是从 32 位 (DWORD) 边界开始的。对齐可以大于 32 位,但具体取决于硬件的需求。 |
• |
打包格式与平面格式。YUV 格式可以分为打包 格式和平面 格式。在打包格式中,Y、U 和 V 组件存储在一个数组中。像素被组织到了一些巨像素组中,巨像素组的布局取决于格式。在平面格式中,Y、U 和 V 组件作为三个单独的平面进行存储。 |
4:4:4 格式,每像素 32 位
推荐一个 4:4:4 格式,FOURCC 码为 AYUV。这是一个打包格式,其中每个像素都被编码为四个连续字节,其组织顺序如下所示。
图 5. AYUV 内存布局
标记了 A 的字节包含 alpha 的值。
4:2:2 格式,每像素 16 位
支持两个 4:2:2 格式,FOURCC 码如下:
• |
YUY2 |
• |
UYVY |
两个都是打包格式,其中每个巨像素都是编码为四个连续字节的两个像素。这样会使得色度水平下采样乘以系数 2。
YUY2
在 YUY2 格式中,数据可被视为一个不带正负号的 char 值组成的数组,其中第一个字节包含第一个 Y 样例,第二个字节包含第一个 U (Cb) 样例,第三个字节包含第二个 Y 样例,第四个字节包含第一个 V (Cr) 样例,如图 6 所示。
图 6. YUY2 内存布局
如果该图像被看作由两个 little-endian WORD 值组成的数组,则第一个 WORD 在最低有效位 (LSB) 中包含 Y0,在最高有效位 (MSB) 中包含 U。第二个 WORD 在 LSB 中包含 Y1,在 MSB 中包含 V。
YUY2 是用于 Microsoft DirectX® Video Acceleration (DirectX VA) 的首选 4:2:2 像素格式。预期它会成为支持 4:2:2 视频的 DirectX VA 加速器的中期要求。
UYVY
此格式与 YUY2 相同,只是字节顺序是与之相反的 — 就是说,色度字节和灯光字节是翻转的(图 7)。如果该图像被看作由两个 little-endian WORD 值组成的数组,则第一个 WORD 在 LSB 中包含 U,在 MSB 中包含 Y0,第二个WORD 在 LSB 中包含 V,在 MSB 中包含 Y1。
图 7. UYVY 内存布局
4:2:0 格式,每像素 16 位
推荐两个 4:2:0 每像素 16 位格式,FOURCC 码如下:
• |
IMC1 |
• |
IMC3 |
两个 FOURCC 码都是平面格式。色度频道在水平方向和垂直方向上都要以系数 2 来进行再次采样。
IMC1
所有 Y 样例都会作为不带正负号的 char 值组成的数组首先显示在内存中。后面跟着所有 V (Cr) 样例,然后是所有 U (Cb) 样例。V 和 U 平面与 Y 平面具有相同的跨距,从而生成如图 8 所示的内存的未使用区域。
图 8. IMC1 内存布局
IMC3
此格式与 IMC1 相同,只是 U 和 V 平面进行了交换:
图 9. IMC3 内存布局
4:2:0 格式,每像素 12 位
推荐四个 4:2:0 每像素 12 位格式,FOURCC 码如下:
• |
IMC2 |
• |
IMC4 |
• |
YV12 |
• |
NV12 |
在所有这些格式中,色度频道在水平方向和垂直方向上都要以系数 2 来进行再次采样。
IMC2
此格式与 IMC1 相同,只是 V (Cr) 和 U (Cb) 行在半跨距边界处进行了交错。换句话说,就是色度区域中的每个完整跨距行都以一行 V 样例开始,然后是一行在下一个半跨距边界处开始的 U 样例(图 10)。此布局与 IMC1 相比,能够更加高效地利用地址空间。它的色度地址空间缩小了一半,因此整体地址空间缩小了 25%。在各个 4:2:0 格式中,IMC2 是第二首选格式,排在 NV12 之后。
图 10. IMC2 内存布局
IMC4
此格式与 IMC2 相同,只是 U (Cb) 和 V (Cr) 行进行了交换:
图 11. IMC4 内存布局
YV12
所有 Y 样例都会作为不带正负号的 char 值组成的数组首先显示在内存中。此数组后面紧接着所有 V (Cr) 样例。V 平面的跨距为 Y 平面跨距的一半,V 平面包含的行为 Y 平面包含行的一半。V 平面后面紧接着所有 U (Cb) 样例,它的跨距和行数与 V 平面相同(图 12)。
图 12. YV12 内存布局
NV12
所有 Y 样例都会作为由不带正负号的 char 值组成的数组首先显示在内存中,并且行数为偶数。Y 平面后面紧接着一个由不带正负号的 char 值组成的数组,其中包含了打包的 U (Cb) 和 V (Cr) 样例,如图 13 所示。当组合的 U-V 数组被视为一个由 little-endian WORD 值组成的数组时,LSB 包含 U 值,MSB 包含 V 值。NV12 是用于 DirectX VA 的首选 4:2:0 像素格式。预期它会成为支持 4:2:0 视频的 DirectX VA 加速器的中期要求。
YUV格式解析2
每秒25帧,每帧两场,扫描线(包括电视机的电子束)自上而下先扫描一场,然后再自上而下扫描第二场
之所以引入场的概念,我的理解是主要为了在有限的带宽和成本内使画面运动更加平滑和消除闪烁感。
这两个场的扫描线是一条一条互相间隔开的,比如说对于一个帧来讲,最上面一条线编号为0,紧挨着的是1,再下来是2,3,4,5,6。。。。那么第一场也许是0,2,4,6;也许是1,3,5,7——这就是隔行扫描
在逐行扫描模式下,就是扫描线按照0,1,2,3,4,5的顺序依次扫描,很明显,这时候就不存在场的概念了。
4:4:4采样就是说三种元素Y,Cb,Cr有同样的分辨率,这样的话,在每一个像素点上都对这三种元素进行采样.数字4是指在水平方向上对于各种元素的采样率,比如说,每四个亮度采样点就有四个Cb的Cr采样值.4:4:4采样完整地保留了所有的信息值.4:2:2采样中(有时记为YUY2),色度元素在纵向与亮度值有同样的分辨率,而在横向则是亮度分辨率的一半(4:2:2表示每四个亮度值就有两个Cb和Cr采样.)4:2:2视频用来构造高品质的视频彩色信号.
在流行的4:2:0采样格式中(常记为YV12)Cb和Cr在水平和垂直方向上有Y分辨率的一半.4:2:0有些不同,因为它并不是指在实际采样中使用4:2:0,而是在编码史中定义这种编码方法是用来区别于4:4:4和4:2:2方法的).4:2:0采样被广泛地应用于消费应用中,比如视频会议,数字电视和DVD存储中。因为每个颜色差别元素中包含了四分之一的Y采样元素量,那么4:2:0YCbCr视频需要刚好4: 4:4或RGB视频中采样量的一半。
4:2:0采样有时被描述是一个"每像素12位"的方法。这么说的原因可以从对四个像素的采样中看出. 使用4:4:4采样,一共要进行12次采样,对每一个Y,Cb和Cr,就需要12*8=96位,平均下来要96/4=24位。使用4:2:0就需要6*8 =48位,平均每个像素48/4=12位。
在一个4:2:0隔行扫描的视频序列中,对应于一个完整的视频帧的Y,Cb,Cr采样分配到两个场中。可以得到,隔行扫描的总采样数跟渐进式扫描中使用的采样数目是相同的。
各种格式的具体使用位数的需求(使用4:2:0采样,对于每个元素用8个位大小表示):
格式: Sub-QCIF 亮度分辨率: 128*96 每帧使用的位: 147456
格式: QCIF 亮度分辨率: 176*144 每帧使用的位: 304128
格式: CIF 亮度分辨率: 352*288 每帧使用的位: 1216512
格式: 4CIF 亮度分辨率: 704*576 每帧使用的位: 4866048
YUV格式详解【转】的更多相关文章
- YUV格式详解
What is YUV YUV,是一种颜色编码方法. YUV是编译true-color颜色空间(color space)的种类,Y'UV, YUV, YCbCr,YPbPr等专有名词都可以称为YUV, ...
- YUV视频格式详解(翻译自微软文档)
原文: https://docs.microsoft.com/en-us/previous-versions/aa904813(v=vs.80) YUV视频格式详解(翻译自微软文档)https://b ...
- java分享第十五天(log4j 格式详解)
log4j 格式详解 log4j.rootLogger=日志级别,appender1, appender2, -. 日志级别:ALL<DEBUG<INFO<WARN<ERRO ...
- php 序列化(serialize)格式详解
1.前言 PHP (从 PHP 3.05 开始)为保存对象提供了一组序列化和反序列化的函数:serialize.unserialize.不过在 PHP 手册中对这两个函数的说明仅限于如何使用,而对序列 ...
- Java字节码(.class文件)格式详解(一)
原文链接:http://www.blogjava.net/DLevin/archive/2011/09/05/358033.html 小介:去年在读<深入解析JVM>的时候写的,记得当时还 ...
- PNG,JPEG,BMP,JIF图片格式详解及其对比
原文地址:http://blog.csdn.net/u012611878/article/details/52215985 图片格式详解 不知道大家有没有注意过网页里,手机里,平板里的图片,事实上,图 ...
- binlog之四:mysql中binlog_format模式与配置详解,binlog的日志格式详解
mysql复制主要有三种方式:基于SQL语句的复制(statement-based replication, SBR),基于行的复制(row-based replication, RBR),混合模式复 ...
- 以太网帧格式、IP数据报格式、TCP段格式+UDP段格式 详解
转载:http://www.cnblogs.com/lifan3a/articles/6649970.html 以太网帧格式.IP数据报格式.TCP段格式+UDP段格式 详解 1.ISO开放系统有 ...
- FLV视频封装格式详解
FLV视频封装格式详解 分类: FFMpeg编解码 2012-04-04 21:13 1378人阅读 评论(2) 收藏 举报 flvheaderaudiovideocodecfile 目录(?)[-] ...
随机推荐
- Laravel 在构造方法中使用session
- C++ Vector实践
实践如下: #include <iostream> #include <vector> #include <typeinfo> using namespace st ...
- react native props上存在的属性,显示不存在
问题:类型“Readonly<{}> & Readonly<{ children?: ReactNode; }>”上不存在属性“navigation”.ts(2339) ...
- PermissionUtils
import android.annotation.TargetApi; import android.app.Activity; import android.content.Context; im ...
- 自定义PopupWindow实现常用效果
package com.loaderman.customviewdemo; import android.content.Context; import android.view.View; impo ...
- 【flask】表单-上传文件
依赖: flask-wtf upload_case.html <!DOCTYPE html> <html lang="en"> <head> & ...
- os x 技巧: 关闭打字时候光标闪烁
关闭光标闪烁: defaults write -g NSTextInsertionPointBlinkPeriodOff -float 0 defaults write -g NSTextInsert ...
- LeetCode.965-单一二叉树(Univalued Binary Tree)
这是悦乐书的第366次更新,第394篇原创 01 看题和准备 今天介绍的是LeetCode算法题中Easy级别的第228题(顺位题号是965).如果树中的每个节点具有相同的值,则二叉树是单一的.当且仅 ...
- MTU,MRU,MSS
MTU是以太网数据链路层概念,默认是1500,当在PPPOE环境的时候,是1492和1480,两者有何区别,暂不清楚 MRU是PPP链路数据链路层的概念,都是最大传输单元的意思 MSS是最大报文段长度 ...
- 【VS开发】使用WinPcap编程(2)——打开网络设备并且开始捕获数据包
这里需要特别强调的一个数据结构是pcap_t,它相当于一个文件描述符,代表一个已经打开的设备.我们对这个设备进行操作,就是对这个文件描述符进行操作. 首先是打开一个已知的设备,使用pcap_open( ...