题目传送门

https://lydsy.com/JudgeOnline/problem.php?id=4771

题解

一道不错的树链并的基础练习题。

如果不是树,而是一个数组的话,对于给定区间内的不同颜色数,我们可以维护一个 \(pre_{i, j}\) 表示前 \(i\) 个最后一个 \(j\) 出现的位置。那么答案就是 \(pre_{r, j} \geq l\) 的 \(j\) 的个数,用主席树维护,第一维 \(i\),第二维 \(pre_i, j\),维护的是数量就可以了。(当然这个问题还有别的方法,比如维护 \(nxt_i\) 之类的)

所以类似的,对于一个点 \(x\),维护 \(pre_{x, i}\) 表示从 \(1\) 到 \(x\) 的链上,满足条件的颜色必须 \(pre_{y, i} \in subtree_x\),最后 \(i\) 颜色最后一次出现的位置,同样第一维 \(i\),第二维 \(pre_i, j\),维护的是数量。

但是这个做法显然有问题。如果 \(x\) 的子树中第 \(d\) 层的点数不止一个,那么会有很多重复的。

发现每一个颜色的点都会对从 \(1\) 到自己的链上的点产生贡献,但是一种颜色只能产生一种贡献。所以考虑进行树链的并来维护就可以了。这样做的第一维就是层数而不是编号了。


时间复杂度 \(O(n\log n)\)。

这道题不卡常但是因为我滥用 memset 导致当做卡常题调了半天。

线段树的点数极限很大,但是跑不满,所以不要直接把整个线段树 memset 一遍。


#include<bits/stdc++.h>

#define fec(i, x, y) (int i = head[x], y = g[i].to; i; i = g[i].ne, y = g[i].to)
#define dbg(...) fprintf(stderr, __VA_ARGS__)
#define File(x) freopen(#x".in", "r", stdin), freopen(#x".out", "w", stdout)
#define fi first
#define se second
#define pb push_back template<typename A, typename B> inline char smax(A &a, const B &b) {return a < b ? a = b , 1 : 0;}
template<typename A, typename B> inline char smin(A &a, const B &b) {return b < a ? a = b , 1 : 0;} typedef long long ll; typedef unsigned long long ull; typedef std::pair<int, int> pii; template<typename I> inline void read(I &x) {
int f = 0, c;
while (!isdigit(c = getchar())) c == '-' ? f = 1 : 0;
x = c & 15;
while (isdigit(c = getchar())) x = (x << 1) + (x << 3) + (c & 15);
f ? x = -x : 0;
} const int N = 1e5 + 7; int n, m, nod, dfc, cnt;
int c[N], rt[N], q[N];
int dep[N], f[N], siz[N], son[N], dfn[N], pre[N], top[N]; struct Node { int lc, rc, val; } t[N * 70];
inline void ins(int &o, int L, int R, int x, int k) {
++cnt;
t[++nod] = t[o], t[o = nod].val += k;
if (L == R) return;
int M = (L + R) >> 1;
if (x <= M) ins(t[o].lc, L, M, x, k);
else ins(t[o].rc, M + 1, R, x, k);
}
inline int qsum(int o, int L, int R, int l, int r) {
++cnt;
if (!o) return 0;
if (l <= L && R <= r) return t[o].val;
int M = (L + R) >> 1;
if (r <= M) return qsum(t[o].lc, L, M, l, r);
if (l > M) return qsum(t[o].rc, M + 1, R, l, r);
return qsum(t[o].lc, L, M, l, r) + qsum(t[o].rc, M + 1, R, l, r);
} inline void qadd(int &o, int x, int k) { /*dbg("x = %d, k = %d\n", x, k);*/ ins(o, 1, n, dfn[x], k); }
inline int qval(int o, int x) { return qsum(o, 1, n, dfn[x], dfn[x] + siz[x] - 1); } struct Edge { int to, ne; } g[N << 1]; int head[N], tot;
inline void addedge(int x, int y) { g[++tot].to = y, g[tot].ne = head[x], head[x] = tot; }
inline void adde(int x, int y) { addedge(x, y), addedge(y, x); } inline void dfs1(int x, int fa = 0) {
dep[x] = dep[fa] + 1, f[x] = fa, siz[x] = 1;
for fec(i, x, y) if (y != fa) dfs1(y, x), siz[x] += siz[y], siz[y] > siz[son[x]] && (son[x] = y);
}
inline void dfs2(int x, int pa) {
top[x] = pa, dfn[x] = ++dfc, pre[dfc] = x;
if (!son[x]) return; dfs2(son[x], pa);
for fec(i, x, y) if (y != f[x] && y != son[x]) dfs2(y, y);
}
inline int lca(int x, int y) {
++cnt;
while (top[x] != top[y]) dep[top[x]] > dep[top[y]] ? x = f[top[x]] : y = f[top[y]];
return dep[x] < dep[y] ? x : y;
} struct cmp {
inline bool operator () (const int &x, const int &y) {++cnt; return dfn[x] < dfn[y]; }
};
std::set<int, cmp> s[N]; inline void ins(std::set<int, cmp> &s, int dep, int x) {
std::set<int, cmp>::iterator p = s.lower_bound(x);
int y = 0, z = 0;
qadd(rt[dep], x, 1);
if (p != s.end()) y = *p, qadd(rt[dep], lca(x, y), -1);
if (p != s.begin()) z = *--p, qadd(rt[dep], lca(x, z), -1);
if (y && z) qadd(rt[dep], lca(y, z), 1);
// dbg("ins: dep = %d, x = %d, y = %d, z = %d, qry = %d, rt[dep] = %d\n", dep, x, y, z, qval(rt[dep], x), rt[dep]);
s.insert(x);
} inline void bfs() {
int hd = 0, tl = 1;
q[tl] = 1;
while (hd < tl) {
int x = q[++hd];
for fec(i, x, y) if (y != f[x]) q[++tl] = y;
}
}
inline void build() {
for (int i = 1; i <= n; ++i) {
int x = q[i];
if (dep[x] != dep[q[i - 1]]) rt[dep[x]] = rt[dep[x] - 1];
ins(s[c[x]], dep[x], x);
}
} inline void work() {
dfs1(1), dfs2(1, 1);
bfs();
build();
int la = 0;
while (m--) {
int x, d;
read(x), read(d);
x ^= la, d ^= la;
// dbg("x = %d, d = %d\n", x, d);
d += dep[x], smin(d, dep[q[n]]);
printf("%d\n", la = qval(rt[d], x));
// la = qval(rt[d], x);
}
memset(t, 0, sizeof(Node) * (nod + 1));
} inline void cls() {
tot = nod = dfc = 0;
memset(head, 0, sizeof(head));
memset(son, 0, sizeof(son));
for (int i = 1; i <= n; ++i) s[i].clear();
} inline void init() {
read(n), read(m);
cls();
for (int i = 1; i <= n; ++i) read(c[i]);
for (int i = 2, x; i <= n; ++i) read(x), addedge(x, i);
} int main() {
#ifdef hzhkk
freopen("hkk.in", "r", stdin);
#endif
int T;
read(T);
while (T--) {
init();
work();
}
fclose(stdin), fclose(stdout);
return 0;
}

bzoj4771 七彩树 dfs序+主席树+树链的并的更多相关文章

  1. 51 nod 1681 公共祖先 (主席树+dfs序)

    1681 公共祖先 基准时间限制:1 秒 空间限制:131072 KB 分值: 80 难度:5级算法题   有一个庞大的家族,共n人.已知这n个人的祖辈关系正好形成树形结构(即父亲向儿子连边). 在另 ...

  2. 2018.09.30 bzoj3551:Peaks加强版(dfs序+主席树+倍增+kruskal重构树)

    传送门 一道考察比较全面的题. 这道题又用到了熟悉的kruskal+倍增来查找询问区间的方法. 查到询问的子树之后就可以用dfs序+主席树统计答案了. 代码: #include<bits/std ...

  3. dfs序+主席树 或者 树链剖分+主席树(没写) 或者 线段树套线段树 或者 线段树套splay 或者 线段树套树状数组 bzoj 4448

    4448: [Scoi2015]情报传递 Time Limit: 20 Sec  Memory Limit: 256 MBSubmit: 588  Solved: 308[Submit][Status ...

  4. 【bzoj3545/bzoj3551】[ONTAK2010]Peaks/加强版 Kruskal+树上倍增+Dfs序+主席树

    bzoj3545 题目描述 在Bytemountains有N座山峰,每座山峰有他的高度h_i.有些山峰之间有双向道路相连,共M条路径,每条路径有一个困难值,这个值越大表示越难走,现在有Q组询问,每组询 ...

  5. 【BZOJ1803】Spoj1487 Query on a tree III 主席树+DFS序

    [BZOJ1803]Spoj1487 Query on a tree III Description You are given a node-labeled rooted tree with n n ...

  6. 【bzoj1803】Spoj1487 Query on a tree III DFS序+主席树

    题目描述 You are given a node-labeled rooted tree with n nodes. Define the query (x, k): Find the node w ...

  7. BZOJ3772 精神污染 【主席树 + dfs序】

    题目 兵库县位于日本列岛的中央位置,北临日本海,南面濑户内海直通太平洋,中央部位是森林和山地,与拥有关西机场的大阪府比邻而居,是关西地区面积最大的县,是集经济和文化于一体的一大地区,是日本西部门户,海 ...

  8. 2019牛客暑期多校训练营(第八场)I-Inner World DFS序+主席树(扫描线也可)

    题目传送门 题意:初始有n棵树,每棵树都只有1个n号节点,现在有m次添加操作,每次操作是将$[l,r]$范围内的树的$u$节点后面添加一个$v$节点.每个v节点只会被添加一次. 然后是q次询问,输出$ ...

  9. Tsinsen A1505. 树(张闻涛) 倍增LCA,可持久化线段树,DFS序

    题目:http://www.tsinsen.com/A1505 A1505. 树(张闻涛) 时间限制:1.0s   内存限制:512.0MB    总提交次数:196   AC次数:65   平均分: ...

随机推荐

  1. django搭建一个小型的服务器运维网站

    前言   不管是运维还是开发抑或是测试,工作中不免会和Linux服务器打交道,常见的操作譬如:查看CPU或内存状态.查看和修改服务器时间.查看或者修改服务器配置文件.实时查看或回看系统的日志.重启服务 ...

  2. MySQL高可用架构之MySQL5.7组复制MGR

    MySQL高可用架构之MySQL5.7组复制MGR########################################################################### ...

  3. P1080国王游戏

    传送 最大值最小什么的一看就是二分了qwq 然鹅并不知道怎么检查,所以我们换个思路 我们要求出最小的最大值,这肯定和大臣的排列有关,会不会有什么规律? 先看看只有两个大臣的情况 排列:1 2,ans1 ...

  4. page size

    https://dev.mysql.com/doc/refman/5.7/en/glossary.html#glos_page_size https://dev.mysql.com/doc/refma ...

  5. 搭建 Git 服务器(基于 CentOS 7)

    服务器上的-Git-架设服务器-官网参考 对于规模比较小的团队,可以直接搭建 Git 服务器,逐个收集研发同学的证书配置进来即可.如果团队规模比较大,可以直接采用 GitLab.Drone 等现成的带 ...

  6. Java 位运算符和移位运算符

    一,运算的位运算符: &  ~ |  ^     主要是对二进制的位计算 :   &  : 两个操作数中位都为1 结果才为1   其他结果为0      forExample: 128 ...

  7. Robot Framework课件汇总

    http://www.testclass.net/rf/ 测试教程网http://www.testclass.net/all

  8. vue2.0 watch里面的 deep和immediate作用

    deep,默认值是 false,代表是否深度监听.immediate:true代表如果在 wacth 里声明了之后,就会立即先去执行里面的handler方法,如果为 false就跟我们以前的效果一样, ...

  9. Python自学第二天学习之《元组与字典》

    一.  元组:tuple类型,元组一级元素 不能修改 不能增加 不能删除,是有序的. 格式 :tu=(1,2,3,4,5,6) 1.类型转换: #字符串转换成元组 b=“123” c=tuple(b) ...

  10. 魔板 (bfs+康托展开)

    # 10027. 「一本通 1.4 例 2」魔板 [题目描述] Rubik 先生在发明了风靡全球魔方之后,又发明了它的二维版本--魔板.这是一张有 888 个大小相同的格子的魔板: 1 2 3 4 8 ...