题目描述

  红莉栖想要弄清楚楼下天王寺大叔的显像管电视对“电话微波炉(暂定)”的影响。
  选取显像管的任意一个平面,一开始平面内有个$n$电子,初始速度分别为$v_i$,定义飘升系数为
$$\sum \limits_{1\leqslant i<j\leqslant n}|v_i\times v_j|^2$$
  由于电视会遭到大叔不同程度的暴击,电子的速度常常会发生变化。也就是说,有两种类型的操作:
  $\bullet 1\ p\ x\ y$将$v_p$改为$(x,y)$
  $\bullet 2\ l\ r$询问$[l,r]$这段区间内的电子的飘升系数
  这么简单的问题红莉栖当然能解决,但是她需要一个人帮忙验证一下结果的正确性。
  由于唯一帮得上忙的桶子去找菲利斯了,于是只能拜托你来完成这个任务了。答案对$20170927$取模即可。


输入格式

第一行两个整数$n,m$表示电子个数和询问个数。
接下来$n$行,每行两个整数$x,y$表示$v_i$。
接下来$m$行,每行形如$1\ p\ x\ y$或$2\ l\ r$,分别表示两种操作。


输出格式

对于每个操作$2$,输出一行一个整数表示飘升系数对$20170927$取模的值。


样例

样例输入:

9 5
13052925 5757314
9968857 11135327
13860145 3869873
6912189 3461377
2911603 7061332
6334922 7708411
5505379 5915686
6806727 588727
7603043 15687404
2 1 6
1 7 2602783 18398476
1 8 8636316 19923037
2 2 7
2 2 4

样例输出:

18529202
963126
19167545


数据范围与提示

对于$100\%$的数据,$1\leqslant n,m\leqslant 10^6,0\leqslant x_i,y_i<20170927,1\leqslant l_i\leqslant r_i\leqslant n$。


题解

我依($qing$)稀($chu$)记得波波老师让我出过这道题的数据,就是题面动了一点,时间限制调小了(当时我还是挺慌的,原题$4s$,现在这个时限我的代码都跑不过我的数据……),但是我还是打了,然后它就$A$了……

简单说一下,上面那个鬼畜的$\times$其实是叉积也就是:

$v_1=(x_1,y_1),v_2=(x_2,y_2) \Rightarrow \vec{v_1}\times \vec{v_2}=x_1\times y_2-x_2\times y_1$。

初步是这样的:$\large \begin{array}{ll} ans &=& \sum \limits_{i=l}^r \sum \limits_{j=i+1}^r (v_i \times v_j)^2 \\ &=& \sum \limits_{i=l}^r \sum \limits_{j=i+1}^r (x_iy_j-x_jy_i)^2 \end{array}$

那么我们化简一下上面那个式子即可得到:

$\large \begin{array}{ll} ans &=& \sum \limits_{i=l}^{r} \sum \limits_{j=i+1}^r (x_i^2y_j^2+x_j^2y_i^2-2x_iy_ix_jy_j) \\ &=& \sum \limits_{i=l}^r \sum \limits_{j=i+1}^r x_i^2y_j^2 + \sum \limits_{i=l}^r \sum \limits_{j=i+1}^r x_j^2y_i^2 - \sum \limits_{i=l}^r \sum \limits_{j=i+1}^r 2x_iy_ix_jy_j \\ &=& \sum \limits_{i=l}^r \sum \limits_{j=l}^r [i!=j]\times x_i^2y_j^2 - \sum \limits_{i=l}^r \sum \limits_{j=l}^r [i!=j]\times x_iy_ix_jy_j \\ &=& \sum \limits_{i=l}^r x_i^2 (\sum \limits_{j=l}^r y_j^2 -y_i^2) - (\sum \limits_{i=l}^r x_iy_i (\sum \limits_{j=l}^r x_jy_j - x_iy_i)) \\ &=& \sum \limits_{i=l}^r x_i^2 \sum \limits_{j=l}^r y_j^2 - \sum \limits_{i=l}^r x_i^2y_i^2 - (\sum \limits_{i=l}^r x_iy_i \sum \limits_{j=l}^r x_jy_j - \sum \limits_{i=l}^r x_i^2 y_i^2) \\ &=& \sum \limits_{i=l}^r x_i^2\times \sum \limits_{i=l}^ry_i^2 - (\sum \limits_{i=l}^r x_iy_i)^2\end{array}$

有了这个式子,我们就可以用三个树状数组维护分别维护$\sum \limits_{i=l}^r x_i^2$,$\sum \limits_{i=l}^r y_i^2$,$\sum \limits_{i=l}^r x_iy_i$即可。

时间复杂度:$\Theta((n+m)\log n)$。

期望得分:$100$分。

实际得分:$100$分。


代码时刻

#include<bits/stdc++.h>
using namespace std;
const int mod=20170927;
int n,m;
long long tr[3][4000001];
pair<long long,long long> e[1000001];
void add(int x,long long val,int id)
{
for(int i=x;i<=n;i+=i&-i)
tr[id][i]=(tr[id][i]+val)%mod;
}
long long query(int x,int id)
{
long long res=0;
for(int i=x;i;i-=i&-i)
res=(res+tr[id][i])%mod;
return res;
}
long long ask(int l,int r,int id)
{
return (query(r,id)-query(l-1,id)+mod)%mod;
}
int main()
{
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++)
{
scanf("%lld%lld",&e[i].first,&e[i].second);
add(i,e[i].first*e[i].first,0);
add(i,e[i].second*e[i].second,1);
add(i,e[i].first*e[i].second,2);
}
while(m--)
{
int op;
scanf("%d",&op);
if(op==1)
{
int p;
long long x,y;
scanf("%d%lld%lld",&p,&x,&y);
add(p,(x*x%mod-e[p].first*e[p].first%mod+mod)%mod,0);
add(p,(y*y%mod-e[p].second*e[p].second%mod+mod)%mod,1);
add(p,(x*y%mod-e[p].first*e[p].second%mod+mod)%mod,2);
e[p]=make_pair(x,y);
}
else
{
int l,r;
scanf("%d%d",&l,&r);
long long res=ask(l,r,0)*ask(l,r,1)%mod,res1=ask(l,r,2);
res=(res-(res1*res1%mod)+mod)%mod;
printf("%lld\n",res);
}
}
return 0;
}

rp++

[CSP-S模拟测试]:天才绅士少女助手克里斯蒂娜(数学+树状数组)的更多相关文章

  1. csps-s模拟测试60嘟嘟噜,天才绅士少女助手克里斯蒂娜,凤凰院凶真题解

    题面:https://www.cnblogs.com/Juve/articles/11625190.html 嘟嘟噜: 约瑟夫问题 第一种递归的容易re,但复杂度较有保证 第二种适用与n大于m的情况 ...

  2. 【CSP模拟赛】天才绅士少女助手克里斯蒂娜(线段树&读入优化&输出优化)

    题面描述 红莉栖想要弄清楚楼下天王寺大叔的显像管电视对“电话微波炉(暂定)”的影响.选取显像管的任意一个平面,一开始平面内有个n电子,初始速度分别为vi,定义飘升系数为 $$\sum_{1\leqsl ...

  3. [CSP-S模拟测试]:小P的单调数列(树状数组+DP)

    题目描述 小$P$最近喜欢上了单调数列,他觉得单调的数列具有非常多优美的性质.经过小$P$复杂的数学推导,他计算出了一个单调增数列的艺术价值等于该数列中所有书的总和.并且以这个为基础,小$P$还可以求 ...

  4. [CSP-S模拟测试]:Equation(数学+树状数组)

    题目描述 有一棵$n$个点的以$1$为根的树,以及$n$个整数变量$x_i$.树上$i$的父亲是$f_i$,每条边$(i,f_i)$有一个权值$w_i$,表示一个方程$x_i+x_{f_i}=w_i$ ...

  5. 「模拟赛20191019」C 推式子+贪心+树状数组

    题目描述 给定一棵\(n\)个点的有根树,根节点编号为\(1\),点有点权. 定义\(d(v)\)表示\(v\)到\(1\)的路径上的边数. 定义\(f(v,u)\)在\(v<u\)且\(v\) ...

  6. hdoj--1556--Color the ball(模拟&&树状数组)

    Color the ball Time Limit: 9000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) T ...

  7. PAT甲题题解-1095. Cars on Campus(30)-(map+树状数组,或者模拟)

    题意:给出n个车辆进出校园的记录,以及k个时间点,让你回答每个时间点校园内的车辆数,最后输出在校园内停留的总时间最长的车牌号和停留时间,如果不止一个,车牌号按字典序输出. 几个注意点: 1.如果一个车 ...

  8. 【洛谷】NOIP提高组模拟赛Day2【动态开节点/树状数组】【双头链表模拟】

    U41571 Agent2 题目背景 炎炎夏日还没有过去,Agent们没有一个想出去外面搞事情的.每当ENLIGHTENED总部组织活动时,人人都说有空,结果到了活动日,却一个接着一个咕咕咕了.只有不 ...

  9. 「模拟赛20180306」回忆树 memory LCA+KMP+AC自动机+树状数组

    题目描述 回忆树是一棵树,树边上有小写字母. 一次回忆是这样的:你想起过往,触及心底--唔,不对,我们要说题目. 这题中我们认为回忆是这样的:给定 \(2\) 个点 \(u,v\) (\(u\) 可能 ...

随机推荐

  1. 【ABAP系列】SAP VA02修改销售订单的BAPI举例

    公众号:SAP Technical 本文作者:matinal 原文出处:http://www.cnblogs.com/SAPmatinal/ 原文链接:[ABAP系列]SAP VA02修改销售订单的B ...

  2. 【洛谷p1970】花匠

    莫得致敬lz谢谢.lz的题解是优秀的题解谢谢! 看算法标签 但是我并不会DP的思路,用一个很神奇的码量超级少的代码(虽然我码了超多),然后其实这个数据可以看做是一个函数嘛对吧:(比如说样例) 那么要注 ...

  3. 面向切面编程 AOP 和装饰器??

    1.AOP概念:面向切面编程,指扩展功能不修改源代码,将功能代码从业务逻辑代码中分离出来. 主要功能:日志记录,性能统计,安全控制,事务处理,异常处理等等. 主要意图:将日志记录,性能统计,安全控制, ...

  4. web框架的本质(使用socket实现的最基础的web框架、使用wsgiref实现的web框架)

    import socket def handle_request(client): data = client.recv(1024) client.send("HTTP/1.1 200 OK ...

  5. java指定若干个网络图片,打包为zip下载

    应项目要求需要将多个存在某url地址的图片,打包为zip下载下来 public void download(HttpServletRequest request, HttpServletRespons ...

  6. JSP2的自定义标签和方法

    Jsp2的自定义标签 Jsp2 开发标签库的几个步骤: 开发自定义标签处理类. 建立一个*.tld文件,每个tld文件对应一个标签库,每个标签库可对应多个标签. 在jsp文件中使用自定义标签 空标签 ...

  7. iOS 应用配置及证书生成教程

    简介 首先你需要有一个苹果的开发者帐号,一台苹果电脑.点击查看苹果开发者账号注册流程 本教程需完成应用信息配置,包括如下两个基本配置: AppID Bundle ID 同时,生成 如下三个证书文件及对 ...

  8. dotnet ef执行报错, VS 2019发布时配置项中的Entity Framework迁移项显示不出来

    VS 2019发布时配置项中的Entity Framework迁移项显示不出来 dotnet ef dbcontext list --json “无法执行,因为找不到指定的命令或文件.可能的原因包括: ...

  9. TensorFlow 安装及使用

    安装 (1)安装包安装:pip install tensorflow==1.14 -i https://pypi.douban.com/simple virtualenv -p /usr/bin/py ...

  10. intel vtune 介绍、安装和使用

    intel vtune 介绍 https://software.intel.com/en-us/vtune intel vtune 安装包下载地址 https://software.intel.com ...