ref:http://stackoverflow.com/questions/200384/constant-amortized-time

如果非要翻译成中文,我觉得摊算时间或均摊时间(注意,它和平均时间不同)。
--------------

Amortised time explained in simple terms:

If you do an operation say a million times, you don't really care about the worst-case or the best-case of that operation - what you care about is how much time is taken in total when you repeat the operation a million times.

So it doesn't matter if the operation is very slow once in a while, as long as "once in a while" is rare enough for the slowness to be diluted away. Essentially amortised time means "average time taken per operation, if you do many operations". Amortised time doesn't have to be constant; you can have linear and logarithmic amortised time or whatever else.

Let's take mats' example of a dynamic array, to which you repeatedly add new items. Normally adding an item takes constant time (that is, O(1)). But each time the array is full, you allocate twice as much space, copy your data into the new region, and free the old space. Assuming allocates and frees run in constant time, this enlargement process takes O(n) time where n is the current size of the array.

So each time you enlarge, you take about twice as much time as the last enlarge. But you've also waited twice as long before doing it! The cost of each enlargement can thus be "spread out" among the insertions. This means that in the long term, the total time taken for adding m items to the array is O(m), and so the amortised time (i.e. time per insertion) is O(1).

---------------------------------

ref: http://stackoverflow.com/questions/19650636/amortized-analysis

Expected time:

We make some assumptions and, based on these assumptions, we make statements about the running time.

Hash tables is one such example. We assume that the data is well-distributed, and claim that the running time of operations are O(1), whereas the worst-case running time for an operation is actually O(n).

Amortized time:

Even though one operation may take longer than some given time, the time across multiple operations will balance out to give the mentioned running time.

(Well-implemented) self-resizing arrays is one such example. When you insert, it takes O(n) to resize the array, but, across many inserts, each will take O(1) on average.

算法中Amortised time的理解的更多相关文章

  1. KMP算法中next函数的理解

    首先要感谢http://blog.csdn.net/v_july_v/article/details/7041827以及http://blog.chinaunix.net/uid-27164517-i ...

  2. KMP算法中next数组的理解与算法的实现(java语言)

    KMP 算法我们有写好的函数帮我们计算 Next 数组的值和 Nextval 数组的值,但是如果是考试,那就只能自己来手算这两个数组了,这里分享一下我的计算方法吧. 计算前缀 Next[i] 的值: ...

  3. KMP算法中我对获取next数组的理解

    之前在学KMP算法时一直理解不了获取next数组的函数是如何实现的,现在大概知道怎么一回事了,记录一下我对获取next数组的理解. KMP算法实现的原理就不再赘述了,先上KMP代码: 1 void g ...

  4. 理解KNN算法中的k值-knn算法中的k到底指的是什么 ?

    2019-11-09 20:11:26为方便自己收藏学习,转载博文from:https://blog.csdn.net/llhwx/article/details/102652798 knn算法是指对 ...

  5. 问题 1690: 算法4-7:KMP算法中的模式串移动数组

    题目链接:https://www.dotcpp.com/oj/problem1690.html 题目描述 字符串的子串定位称为模式匹配,模式匹配可以有多种方法.简单的算法可以使用两重嵌套循环,时间复杂 ...

  6. 机器学习算法中的准确率(Precision)、召回率(Recall)、F值(F-Measure)

    摘要: 数据挖掘.机器学习和推荐系统中的评测指标—准确率(Precision).召回率(Recall).F值(F-Measure)简介. 引言: 在机器学习.数据挖掘.推荐系统完成建模之后,需要对模型 ...

  7. java中线程同步的理解(非常通俗易懂)

    转载至:https://blog.csdn.net/u012179540/article/details/40685207 Java中线程同步的理解 我们可以在计算机上运行各种计算机软件程序.每一个运 ...

  8. 动态规划(Dynamic Programming)算法与LC实例的理解

    动态规划(Dynamic Programming)算法与LC实例的理解 希望通过写下来自己学习历程的方式帮助自己加深对知识的理解,也帮助其他人更好地学习,少走弯路.也欢迎大家来给我的Github的Le ...

  9. 关于diffing算法中key的使用

    在vue和react中(只学了这两个),经常需要渲染元素到DOM上,而且如果不写key,有的浏览器会进行报错或者进行提示. 在我的理解里:key其实就是一个身份的标识,证明这个位置坐的就是这个人.后期 ...

随机推荐

  1. gym102201F_Fruit Tree

    题意 给一棵带权树,多次询问路径上出现次数超过一半的数. 分析 dfs序建主席树,维护的就是根到某个节点这段路径的值域情况. 因为题目所求的不是一般的众数,而是出现次数大于一半的,所以在主席树上可以直 ...

  2. 如何使用Resource资源文件

    一.目的 为了能够在DisplayAttribute中重复使用同样的名称,将所有的显示字符串集中管理. 二.方法 1.DisplayAttribute本身支持直接使用资源文件. [Display(Re ...

  3. wex5 如何导包

    wex5中 导jar包 要先把jar文件放在: E:\WeX5\runtime\BaasServer\WEB-INF\lib目录中(我wex5放的是E盘) 点击项目 --> 属性 --> ...

  4. 基于Spring Cloud 几行配置完成单点登录开发

    单点登录概念 单点登录(Single Sign On),简称为 SSO,是目前比较流行的企业业务整合的解决方案之一.SSO的定义是在多个应用系统中,用户只需要登录一次就可以访问所有相互信任的应用系统. ...

  5. 八、break和continue

  6. 2019-11-29-VisualStudio-使用新项目格式快速打出-Nuget-包

    title author date CreateTime categories VisualStudio 使用新项目格式快速打出 Nuget 包 lindexi 2019-11-29 10:15:25 ...

  7. 第五小节之JAVA IO流

    文件:文本文件是一种计算机文件,它是一种典型的顺序文件,其文件的逻辑结构又属于流式文件,特别的是指以ASCLL码方式(也称为文本方式)存储的文件,而更确切地说,英文.数字等字符存储的是ASCLL码,而 ...

  8. 一、H5(移动端)前端使用input type=file 上传图片,调用相机和相册

    一.H5(移动端)前端使用input type=file 上传图片,调用相机和相册

  9. win 与Linux 的hosts文件地址

    win(phpstudy):C:/Windows/System32/drivers/etc/hosts linux:  /etc/hosts

  10. Java编程思想 第21章 并发

    这是在2013年的笔记整理.现在重新拿出来,放在网上,重新总结下. 两种基本的线程实现方式 以及中断 package thread; /** * * @author zjf * @create_tim ...