题目:https://loj.ac/problem/3092

同一个人的不同城堡之间没有什么联系,只是和<=m。所以对每个城堡的 s 个值排序,做一个 f[ i ][ j ] 表示第 i 个城堡花 j 的代价最大能得到多少收益。

dp[ i ][ j ] 表示前 i 个城堡花 j 的代价的最大收益。 dp[ i ][ j ] = max( dp[ i-1 ][ k ] + f[ i ][ j-k ] ) 。

发现 f[ i ][ * ] 是一个分 s 段的函数。所以枚举 s 段即可。也就是把 f 改成 f[ i ][ s ] 表示第 i 个城堡得到 s 的收益最少花多少代价。

dp[ i ][ j ] = max( s + dp[ i-1 ][ j-f[ i ][ s ] ] ) 。注意代价要乘 i 。

时间是 2e8 却能过。

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
int rdn()
{
int ret=;bool fx=;char ch=getchar();
while(ch>''||ch<''){if(ch=='-')fx=;ch=getchar();}
while(ch>=''&&ch<='')ret=ret*+ch-'',ch=getchar();
return fx?ret:-ret;
}
int Mx(int a,int b){return a>b?a:b;}
const int N=,M=2e4+;
int cnt,n,m,a[N][N],f[N][N],dp[N][M];
int main()
{
cnt=rdn();n=rdn();m=rdn();
for(int i=;i<=cnt;i++)
for(int j=;j<=n;j++)a[j][i]=rdn();
for(int i=;i<=n;i++)
{
sort(a[i]+,a[i]+cnt+);
for(int j=;j<=cnt;j++)
f[i][j]=*a[i][j]+;
}
for(int i=;i<=n;i++)
for(int j=;j<=m;j++)
for(int s=;s<=cnt;s++)
{
if(j<f[i][s])break;
dp[i][j]=Mx(dp[i][j],s*i+dp[i-][j-f[i][s]]);
}
printf("%d\n",dp[n][m]);
return ;
}

LOJ 3092 「BJOI2019」排兵布阵 ——DP的更多相关文章

  1. LOJ#3092. 「BJOI2019」排兵布阵(递推)

    题面 传送门 题解 设\(dp_{i,j}\)表示前\(i\)座塔派了总共\(j\)个人的最大收益,转移显然 //minamoto #include<bits/stdc++.h> #def ...

  2. 【LOJ】#3092. 「BJOI2019」排兵布阵

    LOJ#3092. 「BJOI2019」排兵布阵 这题就是个背包啊,感觉是\(nms\)的但是不到0.2s,发生了什么.. 就是设\(f[i]\)为选了\(i\)个人最大的代价,然后有用的人数只有\( ...

  3. 【BJOI2019】排兵布阵 DP

    题目大意:有$n$座城堡,$s$轮游戏. 对于第$x$轮,第i座城堡的士兵数量为$a[x][i]$. 如果你需要攻下第i座城堡,你在第i座城堡部署的士兵必须严格大于$2a[x][i]$,如果攻下了你会 ...

  4. Loj #3093. 「BJOI2019」光线

    Loj #3093. 「BJOI2019」光线 题目描述 当一束光打到一层玻璃上时,有一定比例的光会穿过这层玻璃,一定比例的光会被反射回去,剩下的光被玻璃吸收. 设对于任意 \(x\),有 \(x\t ...

  5. Loj #3089. 「BJOI2019」奥术神杖

    Loj #3089. 「BJOI2019」奥术神杖 题目描述 Bezorath 大陆抵抗地灾军团入侵的战争进入了僵持的阶段,世世代代生活在 Bezorath 这片大陆的精灵们开始寻找远古时代诸神遗留的 ...

  6. [BJOI2019]排兵布阵 DP

    [BJOI2019]排兵布阵 DP 比较好想的DP,设\(dp[i][j]\)表示第\(i\)个城堡时,已派出\(j\)个士兵.决策时,贪心派出恰好严格大于某一玩家派出的数量的两倍(不然浪费).我们发 ...

  7. loj 3090 「BJOI2019」勘破神机 - 数学

    题目传送门 传送门 题目大意 设$F_{n}$表示用$1\times 2$的骨牌填$2\times n$的网格的方案数,设$G_{n}$$表示用$1\times 2$的骨牌填$3\times n$的网 ...

  8. LOJ 3089 「BJOI2019」奥术神杖——AC自动机DP+0/1分数规划

    题目:https://loj.ac/problem/3089 没想到把根号之类的求对数变成算数平均值.写了个只能得15分的暴力. #include<cstdio> #include< ...

  9. LOJ 3094 「BJOI2019」删数——角标偏移的线段树

    题目:https://loj.ac/problem/3094 弱化版是 AGC017C . 用线段树维护那个题里的序列即可. 对应关系大概是: 真实值的范围是 [ 1-m , n+m ] :考虑设偏移 ...

随机推荐

  1. 神经网络 fann 教程 英文 以及 翻译 参考

    http://fann.sourceforge.net/fann_en.pdf http://blog.csdn.net/fengshuiyue/article/details/41446257

  2. Vagrant 手册之网络 - 端口转发

    原文地址 Vagrantfile 配置文件中端口转发的网络标识符:forwarded_port,例如: config.vm.network "forwarded_port", gu ...

  3. 23.协程的使用场景,高I/O密集型程序

    import time def one_hundred_millionA(): start_time = time.time() i = 0 for _ in range(100000000): i ...

  4. GD Library extension not available

    在后台文章上传封面时,遇到了这样一个错误 GD Library extension not available with this PHP installation Ubuntu Nginx 自己在本 ...

  5. Scala函数高级操作

    字符串高级操作:***** 非常重要 将函数赋值给变量/值def sayHello(name:String): Unit = { println(s"Hello:$name")} ...

  6. JavaWeb——servlet1

    一.servlet简介 Servlet(Server Applet)是Java Servlet的简称,称为小服务程序或服务连接器,用Java编写的服务器端程序,具有独立于平台和协议的特性,主要功能在于 ...

  7. 严重: StandardWrapper.Throwable org.springframework.beans.factory.BeanCreationException: Error creating bean with name

    HTTP Status 500 - Servlet.init() for servlet mybatis threw exception type Exception report message S ...

  8. jvm学习(3)方法区、堆、对象存储位置

    方法区 方法区,Method Area, 对于习惯在HotSpot虚拟机上开发和部署程序的开发者来说,很多人愿意把方法区称为“永久代”(Permanent Generation),本质上两者并不等价, ...

  9. Java源码之ArrayList分析

    一.ArrayList简介 ArrayList底层的数据结构是数组,数组元素类型为Object类型,即可以存放所有类型数据. 与Java中的数组相比,它的容量能动态增长.当创建一个数组的时候,就必须确 ...

  10. elasticsearch 基础 —— Mapping参数boost、coerce、copy_to、doc_values、dynamic、

    boost 在查询时,各个字段可以自动提升 - 更多地依赖于相关性得分,boost参数如下: PUT my_index { "mappings": { "_doc&quo ...