Kick Start 2019 Round D
X or What?
符号约定:
- $\xor$ 表示异或。
- popcount($x$) 表示非负整数 $x$ 的二进制表示里数字 1 出现的次数。例如,$13 = 1101_2$,则 popcount(13) = 4。
注意到,popcount($a \xor b$) = popcount($a$) + popcount($b$) - 2 * number of positions both $a$ and $b$ are set。
因此,popcount($a \xor b$) 的奇偶性 = (popcount($a$) + popcount($b$)) 的奇偶性。
区间 $[L, R]$ 的异或和的 popcount 为偶数 $\iff$ $L - 1, R$ 这两个前缀的异或和的 popcount 同奇偶。
分别考虑异或和的 popcount 为奇数的前缀、异或和的 popcount 为偶数的前缀。
改变 $A_p$ 对答案的影响:
若 $A_p$ 的 popcount 的奇偶性不变,则答案亦不变,否则 $p, p+1, \dots, n - 1$ 这些前缀的异或和的 popcount 的奇偶性翻转。
解法 1
用线段树维护前缀的异或和的 popcount 的奇偶性。
支持查询:
- 异或和的 popcount 为偶数的前缀最后一次出现的位置。
- 异或和的 popcount 为奇数的前缀第一次/最后一次出现的位置。
bool bit_even(int x) {
return (__builtin_popcount(x) & 1) == 0;
}
struct node {
int n[2];
int flipped;
void flip() {
swap(n[0], n[1]);
flipped ^= 1;
}
};
const int N = 100005;
node seg[4 * N];
int sum[N];
void push_up(int i) {
int l = i * 2, r = l + 1;
for (int j = 0; j < 2; j++) {
seg[i].n[j] = seg[l].n[j] + seg[r].n[j];
}
}
void build (int i, int l, int r) {
seg[i].flipped = 0;
if (l == r) {
seg[i].n[0] = bit_even(sum[l]);
seg[i].n[1] = 1 - seg[i].n[0];
return;
}
int mid = (l + r) / 2;
build(i * 2, l, mid);
build(i * 2 + 1, mid + 1, r);
push_up(i);
}
void push_down(int i) {
if (seg[i].flipped) {
int l = i * 2, r = i * 2 + 1;
seg[l].flip();
seg[r].flip();
seg[i].flipped = 0;
}
}
int find_first(int v, int i, int l, int r) {
if (seg[i].n[v] == 0) return r + 1;
if (l == r) return l;
push_down(i);
int mid = (l + r) / 2;
int res = find_first(v, i * 2, l, mid);
if (res <= mid) {
return res;
}
return find_first(v, i * 2 + 1, mid + 1, r);
}
int find_last(int v, int i, int l, int r) {
if (seg[i].n[v] == 0) return l - 1;
if (l == r) return l;
push_down(i);
int mid = (l + r) / 2;
int res = find_last(v, i * 2 + 1, mid + 1, r);
if (res > mid) {
return res;
}
return find_last(v, i * 2, l, mid);
}
void flip(int i, int l, int r, int ql, int qr) {
if (ql > r || qr < l) return;
if (ql <= l && r <= qr) {
seg[i].flip();
return;
}
int mid = (l + r) / 2;
push_down(i);
flip(i * 2, l, mid, ql, qr);
flip(i * 2 + 1, mid + 1, r, ql, qr);
push_up(i);
}
int main() {
#ifdef LOCAL
ifstream in("main.in");
cin.rdbuf(in.rdbuf());
#endif
int T; cin >> T;
for (int cas = 1; cas <= T; ++cas) {
cout << "Case #" << cas << ":";
int n, q; cin >> n >> q;
vector<int> a(n + 1);
for (int i = 1; i <= n; i++) {
cin >> a[i];
sum[i] = sum[i - 1] ^ a[i];
}
build(1, 1, n);
while (q--) {
int p, v;
cin >> p >> v;
++p;
if (bit_even(v) != bit_even(a[p])) {
flip(1, 1, n, p, n);
}
a[p] = v;
cout << " " << max(find_last(0, 1, 1, n), find_last(1, 1, 1, n) - find_first(1, 1, 1, n));
}
cout << endl;
}
return 0;
}
Kick Start 2019 Round D的更多相关文章
- kick start 2019 round D T3题解
---恢复内容开始--- 题目大意:共有N个房子,每个房子都有各自的坐标X[i],占据每个房子需要一定花费C[i].现在需要选择K个房子作为仓库,1个房子作为商店(与题目不同,概念一样),由于仓库到房 ...
- kick start 2019 round D T2题解
题目大意:由N个房子围成一个环,G个人分别顺时针/逆时针在房子上走,一共走M分钟,每分钟结束,每个人顺/逆时针走到相邻的房子.对于每个房子都会记录最后时刻到达的人(可能是一群人).最终输出每个人会被几 ...
- Kick Start 2019 Round A Contention
$\DeclareMathOperator*{\argmax}{arg\,max}$ 题目链接 题目大意 一排 $N$ 个座位,从左到右编号 $1$ 到 $N$ . 有 $Q$ 个预定座位的请求,第 ...
- Kick Start 2019 Round H. Elevanagram
设共有 $N = \sum_{i=1}^{9} A_i$ 个数字.先把 $N$ 个数字任意分成两组 $A$ 和 $B$,$A$ 中有 $N_A = \floor{N/2}$ 个数字,$B$ 中有 $N ...
- Kick Start 2019 Round A Parcels
题目大意 $R \times C$ 的网格,格子间的距离取曼哈顿距离.有些格子是邮局.现在可以把至多一个不是邮局的格子变成邮局,问每个格子到最近的邮局的曼哈顿距离的最大值最小是多少. 数据范围 $ 1 ...
- Kick Start 2019 Round B Energy Stones
对我很有启发的一道题. 这道题的解法中最有思维难度的 observation 是 For simplicity, we will assume that we never eat a stone wi ...
- 【DP 好题】Kick Start 2019 Round C Catch Some
题目链接 题目大意 在一条数轴上住着 $N$ 条狗和一个动物研究者 Bundle.Bundle 的坐标是 0,狗的坐标都是正整数,可能有多条狗住在同一个位置.每条狗都有一个颜色.Bundle 需要观测 ...
- Kick Start 2019 Round F Teach Me
题目链接 题目大意 有 $N$ 个人,$S$ 项技能,这些技能用 $1, 2, 3, \dots, S$ 表示 .第 $i$ 个人会 $c_i$ 项技能($ 1 \le c_i \le 5 $).对于 ...
- Google Kick Start 2019 C轮 第一题 Wiggle Walk 题解
Google Kick Start 2019 C轮 第一题 Wiggle Walk 题解 题目地址:https://codingcompetitions.withgoogle.com/kickstar ...
随机推荐
- linux中more命令如何使用
more命令,功能类似 cat ,cat命令是整个文件的内容从上到下显示在屏幕上.兄弟连Linux培训教程() more会以一页一页的显示方便使用者逐页阅读,而最基本的指令就是按空白键(sp ...
- javascript中创建对象的方式及优缺点(二)
一.工厂模式 流程: 定义一个函数,函数返回对象. 适用场景: 需要创建多个对象,都是Object类型. 优点:完成了返回一个对象的要求. 缺点: 对象没有一个具体的类型,无法通过constructo ...
- CF1213D Equalizing by Division
easy version hard version 问题分析 直接从hard version入手.不难发现从一个数\(x\)能得到的数个数是\(O(\log x)\)的.这样总共有\(O(n\log ...
- UE4添加模块
添加模块在这篇文章里已经有详细的描述了: https://orfeasel.com/creating-custom-modules/ 但是这篇文章中少写了一个步骤: 最后要在 <工程名>E ...
- latex参考文献中作者名字含有特殊字符怎么办
- python中的事务
1. 为什么要有事务 事务广泛的运用于订单系统.银行系统等多种场景 例如: A用户和B用户是银行的储户,现在A要给B转账500元,那么需要做以下几件事: 检查A的账户余额>500元: A 账户中 ...
- Docker入门-构建第一个Java程序
定制镜像 准备一个没有第三方依赖的java web项目,可能参考示例maven结构项目: session-web.war 把该war上传到安装有docker软件的服务器上宿主目录下.在同级目录创建Do ...
- python3笔记十九:os和ospath模块
一:学习内容 os模块 ospath模块 获取指定目录下所有文件和目录 二:os模块 包含了普遍的操作系统功能,需要导入该模块:import os 当前所在位置目录结构为: 目录操作 1.获取当前目录 ...
- vuex 的介绍
vue-cli 中 css 的作用域 scoped vue 数据的为响应数据,一改全改,一变全变的特性,我们的很多处理也会围绕着他 vuex 是处理数据的,是 vue 的数据仓库 vuex 的作用:采 ...
- leetcode-easy-string-28 Implement strStr()
mycode 77.15% class Solution(object): def strStr(self, haystack, needle): """ :type ...