tensorflow 中 inter_op 和 intra_op
[root@localhost custom-resnet-v2]# cat runme.sh
#python demo_slim.py -h
#python demo_slim.py --cpu_num 8 --inter_op_threads 1 --intra_op_threads 8 --dump_timeline True
# export KMP_AFFINITY=verbose,granularity=fine,proclist=[0,1,2,3],explicit
# numactl -C 0-3 python demo_slim.py --cpu_num 4 --inter_op_threads 1 --intra_op_threads 4 >& run1.log &
export OMP_NUM_THREADS=8
python demo_slim.py --cpu_num 8 --inter_op_threads 1 --intra_op_threads 8
[root@localhost custom-resnet-v2]# cat demo_slim.py
# coding: utf8
import os
import sys
import numpy as np
import tensorflow as tf
from tensorflow.python.client import timeline
import argparse
import time
def make_fake_input(batch_size, input_height, input_width, input_channel):
im = np.zeros((input_height,input_width,input_channel), np.uint8)
im[:,:,:] = 1
images = np.zeros((batch_size, input_height, input_width, input_channel), dtype=np.float32)
for i in xrange(batch_size):
images[i, 0:im.shape[0], 0:im.shape[1], :] = im
#channel_swap = (0, 3, 1, 2) # caffe
#images = np.transpose(images, channel_swap)
#cv2.imwrite("test.jpg", im)
return images
def get_parser():
"""
create a parser to parse argument "--cpu_num --inter_op_threads --intra_op_threads"
"""
parser = argparse.ArgumentParser(description="Specify tensorflow parallelism")
parser.add_argument("--cpu_num", dest="cpu_num", default=1, help="specify how many cpus to use.(default: 1)")
parser.add_argument("--inter_op_threads", dest="inter_op_threads", default=1, help="specify max inter op parallelism.(default: 1)")
parser.add_argument("--intra_op_threads", dest="intra_op_threads", default=1, help="specify max intra op parallelism.(default: 1)")
parser.add_argument("--dump_timeline", dest="dump_timeline", default=False, help="specify to dump timeline.(default: False)")
return parser
def main():
parser = get_parser()
args = parser.parse_args()
#parser.print_help()
cpu_num = int(args.cpu_num)
inter_op_threads = int(args.inter_op_threads)
intra_op_threads = int(args.intra_op_threads)
dump_timeline = bool(args.dump_timeline)
print("cpu_num: ", cpu_num)
print("inter_op_threads: ", inter_op_threads)
print("intra_op_threads: ", intra_op_threads)
print("dump_timeline: ", dump_timeline)
config = tf.ConfigProto(device_count={"CPU": cpu_num}, # limit to num_cpu_core CPU usage
inter_op_parallelism_threads = inter_op_threads,
intra_op_parallelism_threads = intra_op_threads,
log_device_placement=False)
with tf.Session(config = config) as sess:
imgs = make_fake_input(1, 224, 224, 3)
#init_start = time.time()
saver = tf.train.import_meta_graph("slim_model/slim_model.ckpt.meta")
saver.restore(sess, tf.train.latest_checkpoint("slim_model/"))
## Operations
#for op in tf.get_default_graph().get_operations():
# print(op.name)
# print(op.values())
graph = tf.get_default_graph()
input_data = graph.get_tensor_by_name("Placeholder:0")
fc6 = graph.get_tensor_by_name("resnet_v2/avg_fc_fc6_Conv2D/BiasAdd:0")
#init_end = time.time()
#print("initialization time: ", init_end-init_start, "s")
time_start = time.time()
for step in range(200):
if dump_timeline:
run_options = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE)
run_metadata = tf.RunMetadata()
result = sess.run(fc6, feed_dict={input_data:imgs}, options=run_options, run_metadata=run_metadata)
tm = timeline.Timeline(run_metadata.step_stats)
ctf = tm.generate_chrome_trace_format()
with open('timeline.json', 'w') as f:
f.write(ctf)
else:
result = sess.run(fc6, feed_dict={input_data:imgs})
print(result[0][0][0])
time_end = time.time()
avg_time = (time_end-time_start) * 1000 / 200;
print("AVG Time: ", avg_time, " ms")
return 0
if __name__ == "__main__":
sys.exit(main())
tensorflow 中 inter_op 和 intra_op的更多相关文章
- Tensorflow中的padding操作
转载请注明出处:http://www.cnblogs.com/willnote/p/6746668.html 图示说明 用一个3x3的网格在一个28x28的图像上做切片并移动 移动到边缘上的时候,如果 ...
- CNN中的卷积核及TensorFlow中卷积的各种实现
声明: 1. 我和每一个应该看这篇博文的人一样,都是初学者,都是小菜鸟,我发布博文只是希望加深学习印象并与大家讨论. 2. 我不确定的地方用了"应该"二字 首先,通俗说一下,CNN ...
- python/numpy/tensorflow中,对矩阵行列操作,下标是怎么回事儿?
Python中的list/tuple,numpy中的ndarrray与tensorflow中的tensor. 用python中list/tuple理解,仅仅是从内存角度理解一个序列数据,而非数学中标量 ...
- [翻译] Tensorflow中name scope和variable scope的区别是什么
翻译自:https://stackoverflow.com/questions/35919020/whats-the-difference-of-name-scope-and-a-variable-s ...
- SSD:TensorFlow中的单次多重检测器
SSD:TensorFlow中的单次多重检测器 SSD Notebook 包含 SSD TensorFlow 的最小示例. 很快,就检测出了两个主要步骤:在图像上运行SSD网络,并使用通用算法(top ...
- 在 TensorFlow 中实现文本分类的卷积神经网络
在TensorFlow中实现文本分类的卷积神经网络 Github提供了完整的代码: https://github.com/dennybritz/cnn-text-classification-tf 在 ...
- [开发技巧]·TensorFlow中numpy与tensor数据相互转化
[开发技巧]·TensorFlow中numpy与tensor数据相互转化 个人主页–> https://xiaosongshine.github.io/ - 问题描述 在我们使用TensorFl ...
- TensorFlow中的变量和常量
1.TensorFlow中的变量和常量介绍 TensorFlow中的变量: import tensorflow as tf state = tf.Variable(0,name='counter') ...
- TensorFlow中的通信机制——Rendezvous(二)gRPC传输
背景 [作者:DeepLearningStack,阿里巴巴算法工程师,开源TensorFlow Contributor] 本篇是TensorFlow通信机制系列的第二篇文章,主要梳理使用gRPC网络传 ...
随机推荐
- Java字符串的不可变性
声明一个字符串引用变量: String s = "abcd"; s是一个引用变量,指向 堆内存中的字符串常量 "abcd" 再声明一个字符串引用变量: Str ...
- 前端iPhone X适配总结
屏幕尺寸 垂直方向上,iPhone X的显示宽度与iPhone 6,iPhone 7 和 iPhone 8 的 4.7 英寸一样,但是比4.7英寸的显示屏高145pt. 安全区域 安全区域指的是一个可 ...
- @清晰掉 c语言三"巨头" const:volatile:static
const: 1.如果把const放在变量类型前,说明这个变量的值是保持不变的(即为常量),改变量必须在定义时初始化,初始化后对她的任何赋值都是非法的. 2.当指针或是引用指向一个常量时,必须在类型名 ...
- group by 与 order by 一起使用的时候
select 后面的列+order by 后面的列 必须在group by 里面 也就是说 select 和 order by 后面的列是 group by 列的子集 而 select 和 order ...
- Oracle JET Router 与 Module 数据传递
Oracle JET 组件间数据传递方法. 路由:父路由:customers Router 子路由: cust Router 这里 Router 和 module 结合使用. customer 包括 ...
- 《ECMAScript6 入门》
NVM Babel babel-core:提供 Babel 的 API,可以获得转码后的代码和抽象语法树. babel-polyfill:Babel 只能转换语法,如果想用类似 Promise.Gen ...
- 会话跟踪之Cookie技术
1. Cookie会话跟踪技术介绍 会话跟踪是Web程序中常用的技术,用来跟踪用户的整个会话.常用的会话跟踪技术是Cookie与Session.Cookie通过在客户端记录信息确定用户身份,可以在客户 ...
- sqlalchemy.exc.InvalidRequestError: Table 'run_result' is already defined for this MetaData instance
临时解决办法: 在models文件导入db后,加上如下代码: db.metadata.clear() 但解决问题的根本之处还是在于找到,为何会声明了2次类的定义呢? 解析: table 'roles_ ...
- Mac下安装lightgbm
Mac下安装lightgbm 1.安装环境 系统 MacOS Mojave 版本10.14.2 Xcode 10.1 $ clang -v Apple LLVM version 10.0.0 (cla ...
- yield(),sleep()以及wait()的区别
往往混淆了这三个函数的使用. 从操作系统的角度讲,os会维护一个ready queue(就绪的线程队列).并且在某一时刻cpu只为ready queue中位于队列头部的线程服务. 但是当前正在被服务的 ...