【题解】Antisymmetry
题目大意
对于一个01字符串,如果将这个字符串0和1取反后,再将整个串反过来和原串一样,就称作“反对称”字符串。比如00001111和010101就是反对称的,1001就不是。
现在给出一个长度为N的01字符串,求它有多少个子串是反对称的。
输入样例
第一行一个正整数N (N ≤ 500,000)。第二行一个长度为N的01字符串。
输出样例
一个正整数,表示反对称子串的个数。
输入样例
8
11001011
输出样例
7
题解
最简单的方法就是二分+Hash了。
我们可以想,对于每个点$i$,如果字符串$[i - j + 1...i + j]$为反对称的,则对于满足$1 \leqslant k < j$的$k$,都有字符串$[i - k + 1...i + k]$为反对称的。
根据这个单调性,我们只需要枚举$i$,然后二分$j$即可。
#include <iostream>
#include <cstdio> #define MAX_N (500000 + 5) using namespace std; typedef unsigned long long ull;
typedef const unsigned long long cull;
int n;
char s[MAX_N];
cull b = ;
ull h1[MAX_N], h2[MAX_N], pb[MAX_N];
int ans; int main()
{
scanf("%d%s", &n, s + );
pb[] = ;
for(register int i = , j = n; i <= n; ++i, --j)
{
h1[i] = h1[i - ] * b + (s[i] == '') + ;
h2[j] = h2[j + ] * b + (s[j] == '') + ;
pb[i] = pb[i - ] * b;
}
int lt, rt, mid;
for(register int i = ; i <= n; ++i)
{
lt = ;
rt = min(i, n - i);
while(lt <= rt)
{
mid = lt + rt >> ;
if(h1[i + mid] - h1[i - mid] * pb[mid << ] != h2[i - mid + ] - h2[i + mid + ] * pb[mid << ]) rt = mid - ;
else lt = mid + ;
}
ans += rt;
}
printf("%d", ans);
return ;
}
参考程序(Hash)
当然,我们也可以直接用manacher做。
其实反对称就类似回文,这里的反对称其实可以理解为对于每个字符串,左半边异或后等于右半边,我们把manacher稍微改一下即可。
注意,这里不能随枚举奇数长度的子串,因为奇数长度本身就是不可能反对称的,这样子可能会影响偶数长度子串的判断。
#include <iostream>
#include <cstdio> #define MAX_N (500000 + 5) using namespace std; int n;
char s[MAX_N];
int len;
char ns[MAX_N << ];
int p[MAX_N << ];
char to[];
long long ans; int main()
{
scanf("%d%s", &n, s + );
len = n << | ;
ns[] = '~';
ns[len + ] = '^';
ns[] = '#';
for(register int i = ; i <= n; ++i)
{
ns[i << ] = s[i];
ns[i << | ] = '#';
}
to[''] = '';
to[''] = '';
to['#'] = '#';
to['~'] = '~';
to['^'] = '^';
int rt = , mid = ;
for(register int i = ; i <= len; i += )
{
if(i < rt) p[i] = min(rt - i + , p[(mid << ) - i]);
else p[i] = ;
while(ns[i + p[i]] == to[ns[i - p[i]]]) ++p[i];
if(i + p[i] - > rt)
{
rt = i + p[i] - ;
mid = i;
}
ans += p[i] >> ;
}
printf("%lld", ans);
return ;
}
参考程序(Manacher)
【题解】Antisymmetry的更多相关文章
- BZOJ2084: [Poi2010]Antisymmetry
2084: [Poi2010]Antisymmetry Time Limit: 10 Sec Memory Limit: 259 MBSubmit: 187 Solved: 125[Submit] ...
- 【BZOJ2084】[Poi2010]Antisymmetry(manarcher)
[BZOJ2084][Poi2010]Antisymmetry(manarcher) 题面 BZOJ 洛谷 题解 一眼马拉车吧...明显就是在回文串的基础上随便改了改. 似乎还可以魔改回文树,然而我这 ...
- POI2010题解
POI2010题解 我也不知道我为什么就开始刷POI了 有些题目咕掉了所以不完整(我都不知道POI到底有多少题) [BZOJ2079][Poi2010]Guilds (貌似bz跟洛谷上的不是一个题?) ...
- 【bzoj2084】[Poi2010]Antisymmetry
2084: [Poi2010]Antisymmetry Time Limit: 10 Sec Memory Limit: 259 MBSubmit: 1205 Solved: 756[Submit ...
- bzoj2084/luoguP3501 [Poi2010]Antisymmetry(回文自动机+dp)
bzoj2084/luoguP3501 [Poi2010]Antisymmetry(回文自动机+dp) bzoj Luogu 对于一个01字符串,如果将这个字符串0和1取反后,再将整个串反过来和原串一 ...
- 2016 华南师大ACM校赛 SCNUCPC 非官方题解
我要举报本次校赛出题人的消极出题!!! 官方题解请戳:http://3.scnuacm2015.sinaapp.com/?p=89(其实就是一堆代码没有题解) A. 树链剖分数据结构板题 题目大意:我 ...
- noip2016十连测题解
以下代码为了阅读方便,省去以下头文件: #include <iostream> #include <stdio.h> #include <math.h> #incl ...
- BZOJ-2561-最小生成树 题解(最小割)
2561: 最小生成树(题解) Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 1628 Solved: 786 传送门:http://www.lyd ...
- Codeforces Round #353 (Div. 2) ABCDE 题解 python
Problems # Name A Infinite Sequence standard input/output 1 s, 256 MB x3509 B Restoring P ...
随机推荐
- Springboot2.x整合SpringSecurity
一.Spring Security是什么?有什么作用(核心作用)?以及如何阅读本篇文章 1.是什么 Spring Security是Spring家族的一个强大的安全框架,与Springboot整合的比 ...
- 20180209-sys模块
sys模块常用操作如下: 1.命令行参数 sys.argv 第一个元素是程序本身路径 # 1.命令行参数 第一个元素是程序本身路径 ret = sys.argv print('命令行参数:',ret ...
- 【记录】使用Navicat将表设计导出数据库设计文档
INFORMATION_SCHEMA. Tables -- 表信息 INFORMATION_SCHEMA. COLUMNS -- 列信息 参考文章地址:https://blog.csdn.net/cx ...
- idea模块搭建新手党常见错误
一.搭建java和web模块会出现的错误(此篇以分布式模块为例) 1.创建空工程 1.点击file ,在弹出的窗口左侧选项中在最后有一个Empty Project选项.此处就是创建空工程. 2.在此空 ...
- 17-正交矩阵和Gram-Schmidt正交化
一.视频链接 1)正交矩阵 定义:如果一个矩阵,其转置与自身的乘积等于单位向量,那么该矩阵就是正交矩阵,该矩阵一般用Q来表示,即$Q^TQ=QQ^T=I$,也就是$Q^T=Q^{-1}$,即转置=逆 ...
- Sass Maps的函数-map-keys($map)
map-keys($map) 函数将会返回 $map 中的所有 key.这些值赋予给一个变量,那他就是一个列表.如: map-keys($social-colors); 其返回的值为: "d ...
- java pravite关键字的使用
package java04; /* * 问题描述:定义Person的年龄时,无法阻止不合理的数值设置进来 * 解决方案:用private关键字将需要保护的成员变量进行修饰 * * 一旦使用了priv ...
- tarzan-linux命令
1.grep -n 'b' c 查看c中包含‘b’的 行 2. ps -ef | grep -n python ps查看所有进程,并且放到管道中| ,grep 在管道中查找包含pyt ...
- ElasticSearch 单台服务器部署多个节点
转载:https://www.cnblogs.com/wxw16/p/6160186.html 一般情况下单台服务器只会部署一个ElasticSearch node,但是在学习过程中,很多情况下会需要 ...
- Session过期,如何跳出iframe框架页的问题
跳出框架页,实际上是更改父页面地址.那么更改父页面地址很简单即: window.parent.location='/Login/loginindex'; 这里说session过期,那么浏览器端的任何请 ...