【CF1247F】Tree Factory(构造)
题意:给定一棵n个点的树,要求将一条可以随意标号的链通过若干次操作变成这棵树
一次操作是指若v不为根且v的父亲不为根,则将v以及v的子树移到v的父亲的父亲上
要求给出标号方案,操作次数以及方案
n<=1e5
思路:考虑最小的操作次数,每一次操作可能使树的最大深度+1,事实上也存在这样的构造方案:
找到从根下来的最长链,找到深度最大的分叉点u,设最长链的后继为v,u的另一个儿子为w,则将v变成w的儿子
具体实现的时候可以用cnt记录当前节点上一个兄弟的最后一条链的深度
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
typedef unsigned int uint;
typedef unsigned long long ull;
typedef long double ld;
typedef pair<int,int> PII;
typedef pair<ll,ll> Pll;
typedef vector<int> VI;
typedef vector<PII> VII;
typedef pair<ll,ll>P;
#define N 200010
#define M 200010
#define INF 1e9
#define fi first
#define se second
#define MP make_pair
#define pb push_back
#define pi acos(-1)
#define mem(a,b) memset(a,b,sizeof(a))
#define rep(i,a,b) for(int i=(int)a;i<=(int)b;i++)
#define per(i,a,b) for(int i=(int)a;i>=(int)b;i--)
#define lowbit(x) x&(-x)
#define Rand (rand()*(1<<16)+rand())
#define id(x) ((x)<=B?(x):m-n/(x)+1)
#define ls p<<1
#define rs p<<1|1 const ll MOD=1e9+,inv2=(MOD+)/;
double eps=1e-;
int dx[]={-,,,};
int dy[]={,,-,}; int head[N],vet[N],nxt[N],f[N],d[N],c[N],id[N],son[N],tot,cnt,ans,s; int read()
{
int v=,f=;
char c=getchar();
while(c<||<c) {if(c=='-') f=-; c=getchar();}
while(<=c&&c<=) v=(v<<)+v+v+c-,c=getchar();
return v*f;
} void add(int a,int b)
{
nxt[++tot]=head[a];
vet[tot]=b;
head[a]=tot;
} void dfs(int u)
{
id[++s]=u;
rep(i,,cnt) c[++ans]=u;
cnt=;
int e=head[u];
while(e)
{
int v=vet[e];
if(v!=son[u]) dfs(v);
e=nxt[e];
}
if(son[u]) dfs(son[u]);
cnt++;
} int main()
{
int n=read(); d[]=;
rep(i,,n) head[i]=;
tot=;
rep(i,,n)
{
int x=read()+;
f[i]=x;
d[i]=d[x]+;
add(x,i);
}
int k=;
rep(i,,n)
if(d[i]>d[k]) k=i;
while(k>)
{
son[f[k]]=k;
k=f[k];
}
s=ans=;
dfs();
rep(i,,n) printf("%d ",id[i]-);
printf("\n");
printf("%d\n",ans);
rep(i,,ans) printf("%d ",c[i]-);
return ;
}
【CF1247F】Tree Factory(构造)的更多相关文章
- Codeforces Round #596 (Div. 2, based on Technocup 2020 Elimination Round 2) F. Tree Factory 构造题
F. Tree Factory Bytelandian Tree Factory produces trees for all kinds of industrial applications. Yo ...
- Codeforces 1246D/1225F Tree Factory (构造)
题目链接 https://codeforces.com/contest/1246/problem/D 题解 首先考虑答案的下界是\(n-1-dep\) (\(dep\)为树的深度,即任何点到根的最大边 ...
- C#结合Jquery LigerUI Tree插件构造树
Jquery LigerUI Tree是Jquery LigerUI()的插件之一,使用它可以快速的构建树形菜单.呵呵 废话不说了,直入正题,下面介绍C#结合ligerui 构造树形菜单的两种方法 1 ...
- VK Cup 2016 - Round 1 (Div. 2 Edition) C. Bear and Forgotten Tree 3 构造
C. Bear and Forgotten Tree 3 题目连接: http://www.codeforces.com/contest/658/problem/C Description A tre ...
- codeforce 1311E. Construct the Binary Tree (构造,就是个模拟)
ACM思维题训练集合 You are given two integers n and d. You need to construct a rooted binary tree consisting ...
- Huffman Tree 简单构造
//函数:构造Huffman树HT[2*n-1] #define MAXVALUE 9999//假设权值不超过9999 #define MAXLEAF 30 #define MAXNODE MAXLE ...
- Codeforces Round #453 (Div. 1) D. Weighting a Tree(构造)
题意 一个 \(n\) 个点 \(m\) 条边的无向连通图中每个点都有一个权值,现在要求给每条边定一个权值,满足每个点的权值等于所有相连的边权之和,权值可负. 题解 如果图是一棵树,那么方案就是唯一的 ...
- CF1003E Tree Constructing 构造+树论
正解:构造 解题报告: 传送门! 这题麻油翻译鸭,,,那就先大概港下题意趴QAQ 构造一棵n个点,直径为d,每个点点度不超过k的树 这题其实我jio得还是比较简单的趴,,, 首先构造出一条直径,就是一 ...
- 2018.09.22 atcoder Integers on a Tree(构造)
传送门 先考虑什么时候不合法. 第一是考虑任意两个特殊点的权值的奇偶性是否满足条件. 第二是考虑每个点的取值范围是否合法. 如果上述条件都满足的话就可以随便构造出一组解. 代码: #include&l ...
随机推荐
- Numpy——进阶篇
impoort numpy as np arr=np.arange(10) #输出奇数 arr[arr%2==1] #将arr中的所有奇数替换为-1,而不改变arr out=np.where(arr% ...
- 使用Sklearn构建朴素贝叶斯分类器-新闻分类
# -*- coding: UTF-8 -*- import jieba import os import random from sklearn.naive_bayes import Multino ...
- Spring中的常见注解
@Controller 标识一个该类是Spring MVC controller处理器,用来创建处理http请求的对象. @RestController Spring4之后加入的注解,原来在@Co ...
- 一致性Hash算法(转)
一致性Hash算法提出了在动态变化的Cache环境中,判定哈希算法好坏的四个定义: 1.平衡性(Balance):平衡性是指哈希的结果能够尽可能分布在所有的缓冲(Cache)中去,这样可以使得所有的缓 ...
- Codeforces - 1096G - Lucky Tickets - NTT
https://codeforc.es/contest/1096/problem/G 把数组分成前后两半,那么前半部分的各个值的表示方案的平方的和就是答案. 这些数组好像可以dp出来. 一开始设dp[ ...
- Restful风格API中用put还是post做新增操作有什么区别?
Restful风格API中用put还是post做新增操作有什么区别? 转 头条面试归来,有些话想和Java开发者说!>>> 这个是华为面试官问我的问题,回来我找了很多资料,想验证这个 ...
- Django文档——Model中的ForeignKey,ManyToManyField与OneToOneField 关联关系字段 (Relationship fields)
ForeignKey,ManyToManyField与OneToOneField分别在Model中定义多对一,多对多,一对一关系. 例如,一本书由一家出版社出版,一家出版社可以出版很多书.一本书由多个 ...
- GridView做加
原文:http://www.cnblogs.com/insus/archive/2012/09/22/2697862.html 下面是Insus.NET实现演示: CObj.cs代码: using S ...
- 网络爬虫之HTTPClient
HTTPClient官网:http://hc.apache.org/httpcomponents-client-4.5.x/quickstart.html 问题一:明明浏览器请求有数据,可使用HTTP ...
- JCTF 2014 小菜两碟
测试文件:https://static2.ichunqiu.com/icq/resources/fileupload//CTF/JCTF2014/re200 参考文章:https://blog.csd ...