本章主要内容是利用mqtt、多线程、队列实现模型一次加载,批量图片识别分类功能

目录结构如下:

mqtt连接及多线程队列管理

MqttManager.py

# -*- coding:utf8 -*-
import paho.mqtt.client as mqtt
from multiprocessing import Process, Queue
import images_detect MQTTHOST = "192.168.3.202"
MQTTPORT = 1883
mqttClient = mqtt.Client()
q = Queue() # 连接MQTT服务器
def on_mqtt_connect():
mqttClient.connect(MQTTHOST, MQTTPORT, 60)
mqttClient.loop_start() # 消息处理函数
def on_message_come(mqttClient, userdata, msg):
q.put(msg.payload.decode("utf-8")) # 放入队列
print("产生消息", msg.payload.decode("utf-8")) def consumer(q, pid):
print("开启消费序列进程", pid)
# 多进程中发布消息需要重新初始化mqttClient
ImagesDetect = images_detect.ImagesDetect()
ImagesDetect.detect(q) # subscribe 消息订阅
def on_subscribe():
mqttClient.subscribe("test", 1) # 主题为"test"
mqttClient.on_message = on_message_come # 消息到来处理函数 # publish 消息发布
def on_publish(topic, msg, qos):
mqttClient.publish(topic, msg, qos); def main():
on_mqtt_connect()
on_subscribe()
for i in range(1, 3):
c1 = Process(target=consumer, args=(q, i))
c1.start()
while True:
pass if __name__ == '__main__':
main()

图片识别

images_detect.py

# coding: utf-8
import numpy as np
import os
import sys
import tarfile
import tensorflow as tf
from object_detection.utils import label_map_util
from object_detection.utils import visualization_utils as vis_util
import cv2
import decimal
import MyUtil context = decimal.getcontext()
context.rounding = decimal.ROUND_05UP class ImagesDetect(): def __init__(self):
sys.path.append("..") MODEL_NAME = 'faster_rcnn_inception_v2_coco_2018_01_28'
MODEL_FILE = MODEL_NAME + '.tar.gz' # Path to frozen detection graph. This is the actual model that is used for the object detection.
PATH_TO_CKPT = MODEL_NAME + '/frozen_inference_graph.pb' # List of the strings that is used to add correct label for each box.
PATH_TO_LABELS = os.path.join('data', 'mscoco_label_map.pbtxt') NUM_CLASSES = 90 tar_file = tarfile.open(MODEL_FILE)
for file in tar_file.getmembers():
file_name = os.path.basename(file.name)
if 'frozen_inference_graph.pb' in file_name:
tar_file.extract(file, os.getcwd()) # ## Load a (frozen) Tensorflow model into memory.
self.detection_graph = tf.Graph()
with self.detection_graph.as_default():
od_graph_def = tf.GraphDef()
with tf.gfile.GFile(PATH_TO_CKPT, 'rb') as fid:
serialized_graph = fid.read()
od_graph_def.ParseFromString(serialized_graph)
tf.import_graph_def(od_graph_def, name='') # ## Loading label map
# Label maps map indices to category names, so that when our convolution network predicts `5`, we know that this corresponds to `airplane`. Here we use internal utility functions, but anything that returns a dictionary mapping integers to appropriate string labels would be fine
label_map = label_map_util.load_labelmap(PATH_TO_LABELS)
categories = label_map_util.convert_label_map_to_categories(label_map, max_num_classes=NUM_CLASSES, use_display_name=True)
self.category_index = label_map_util.create_category_index(categories) self.image_tensor = self.detection_graph.get_tensor_by_name('image_tensor:0')
# 每个框代表一个物体被侦测到
self.boxes = self.detection_graph.get_tensor_by_name('detection_boxes:0')
# 每个分值代表侦测到物体的可信度.
self.scores = self.detection_graph.get_tensor_by_name('detection_scores:0')
self.classes = self.detection_graph.get_tensor_by_name('detection_classes:0')
self.num_detections = self.detection_graph.get_tensor_by_name('num_detections:0') def detect(self, q):
with self.detection_graph.as_default():
config = tf.ConfigProto()
# config.gpu_options.allow_growth = True
config.gpu_options.per_process_gpu_memory_fraction = 0.2
with tf.Session(graph=self.detection_graph, config=config) as sess:
while True: img_src = q.get() print('------------start------------' + MyUtil.get_time_stamp())
image_np = cv2.imread(img_src)
# 扩展维度,应为模型期待: [1, None, None, 3]
image_np_expanded = np.expand_dims(image_np, axis=0) # 执行侦测任务.
(boxes, scores, classes, num_detections) = sess.run(
[self.boxes, self.scores, self.classes, self.num_detections],
feed_dict={self.image_tensor: image_np_expanded})
# 检测结果的可视化
vis_util.visualize_boxes_and_labels_on_image_array(
image_np,
np.squeeze(boxes),
np.squeeze(classes).astype(np.int32),
np.squeeze(scores),
self.category_index,
use_normalized_coordinates=True,
line_thickness=8)
print('------------end------------' + MyUtil.get_time_stamp())
# cv2.imshow('object detection', cv2.resize(image_np, (800, 600)))
if cv2.waitKey(25) & 0xFF == ord('q'):
cv2.destroyAllWindows()
break

MyUtil.py

import time

def get_time_stamp():
ct = time.time()
local_time = time.localtime(ct)
data_head = time.strftime("%Y-%m-%d %H:%M:%S", local_time)
data_secs = (ct - int(ct)) * 1000
time_stamp = "%s.%03d" % (data_head, data_secs)
return time_stamp

效果:

基于谷歌开源的TensorFlow Object Detection API视频物体识别系统搭建自己的应用(四)的更多相关文章

  1. 对于谷歌开源的TensorFlow Object Detection API视频物体识别系统实现教程

    本教程针对Windows10实现谷歌近期公布的TensorFlow Object Detection API视频物体识别系统,其他平台也可借鉴. 本教程将网络上相关资料筛选整合(文末附上参考资料链接) ...

  2. 谷歌开源的TensorFlow Object Detection API视频物体识别系统实现教程

    视频中的物体识别 摘要 物体识别(Object Recognition)在计算机视觉领域里指的是在一张图像或一组视频序列中找到给定的物体.本文主要是利用谷歌开源TensorFlow Object De ...

  3. 谷歌开源的TensorFlow Object Detection API视频物体识别系统实现(二)[超详细教程] ubuntu16.04版本

    本节对应谷歌开源Tensorflow Object Detection API物体识别系统 Quick Start步骤(一): Quick Start: Jupyter notebook for of ...

  4. 谷歌开源的TensorFlow Object Detection API视频物体识别系统实现(一)[超详细教程] ubuntu16.04版本

    谷歌宣布开源其内部使用的 TensorFlow Object Detection API 物体识别系统.本教程针对ubuntu16.04系统,快速搭建环境以及实现视频物体识别系统功能. 本节首先介绍安 ...

  5. 安装运行谷歌开源的TensorFlow Object Detection API视频物体识别系统

    Linux安装 参照官方文档:https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/inst ...

  6. 使用Tensorflow object detection API——训练模型(Window10系统)

    [数据标注处理] 1.先将下载好的图片训练数据放在models-master/research/images文件夹下,并分别为训练数据和测试数据创建train.test两个文件夹.文件夹目录如下 2. ...

  7. 基于TensorFlow Object Detection API进行迁移学习训练自己的人脸检测模型(二)

    前言 已完成数据预处理工作,具体参照: 基于TensorFlow Object Detection API进行迁移学习训练自己的人脸检测模型(一) 设置配置文件 新建目录face_faster_rcn ...

  8. 基于TensorFlow Object Detection API进行相关开发的步骤

    *以下二/三.四步骤确保你当前的文件目录是以research文件夹为相对目录. 一/安装或升级protoc 查看protoc版本命令: protoc --version 如果发现版本低于2.6.0或运 ...

  9. 使用TensorFlow Object Detection API+Google ML Engine训练自己的手掌识别器

    上次使用Google ML Engine跑了一下TensorFlow Object Detection API中的Quick Start(http://www.cnblogs.com/take-fet ...

随机推荐

  1. B/S实现大视频上传

    在公司做B/S 开发与维护三年啦, 对B/S架构的了解也是只知大概,对于这种基础知识还是很有必要理一理哒.趁空去网上查阅了资料,顺便整理一份笔记供以后查询. 一. B/S的概念 B/S(Brower/ ...

  2. 超大文件上传方案( Java )

    1.介绍enctype enctype 属性规定发送到服务器之前应该如何对表单数据进行编码. enctype作用是告知服务器请求正文的MIME类型(请求消息头content-type的作用一样) 1. ...

  3. HDU1232 畅通工程(并查集)

    #include<iostream> using namespace std; ]; int findx(int x) { while(num[x]!=x)x=num[x]; return ...

  4. 【PowerOJ1739&网络流24题】魔术球问题(最大流)

    题意: 思路: 0.[问题分析] 枚举答案转化为判定性问题,然后最小路径覆盖,可以转化成二分图最大匹配,从而用最大流解决. [建模方法] 枚举答案A,在图中建立节点1..A.如果对于i<j有i+ ...

  5. [IOI2008] Fish 鱼

    https://www.luogu.org/recordnew/lists?uid=56840 题解 首先可以发现我们对于每种颜色的鱼,长一点的能够覆盖的方案已定完全包含短一点的方案. 所以我们可以只 ...

  6. Actor Roles 图示

    Udemy上的教程<Unreal Multiplayer Mastery - Online Game Development in C++>中对Actor Roles的总结非常直观到位,一 ...

  7. permutation 2

    permutation 2 猜了发结论过了== $N$个数的全排列,$p_{1}=x,p_{2}=y$要求$|p_{i+1}-p_{i}|<=2|$求满足条件的排列个数. 首先考虑$x=1,y= ...

  8. 解决:使用ajax验证登录信息返回前端页面时,当前整个页面刷新。

    源代码如下: function loginform(){ $.ajax({ url:"loginValidate.do", type:'post', data:{"nam ...

  9. 词频分析 评论标签 nltp APP-分析买家评论的评分-高频词:二维关系

    0-定评论结果:好评.差评,1星.4星,二元化为“积极.消极”,取一元的数据为样本 1-得到词频结果:如手机类的“积极样本”得到前10的高频词:运行(run running ran).内存(memor ...

  10. (转)flexpaper 参数

    本文转载自:http://blog.csdn.net/z69183787/article/details/18659913 Flexpaper可能用到如下参数   SwfFile (String) 需 ...