graph即tf.Graph(),session即tf.Session(),很多人经常将两者混淆,其实二者完全不是同一个东西。

  • graph定义了计算方式,是一些加减乘除等运算的组合,类似于一个函数。它本身不会进行任何计算,也不保存任何中间计算结果。
  • session用来运行一个graph,或者运行graph的一部分。它类似于一个执行者,给graph灌入输入数据,得到输出,并保存中间的计算结果。同时它也给graph分配计算资源(如内存、显卡等)。

TensorFlow是一种符号式编程框架,首先要构造一个图(graph),然后在这个图上做运算。打个比方,graph就像一条生产线,session就像生产者。生产线具有一系列的加工步骤(加减乘除等运算),生产者把原料投进去,就能得到产品。不同生产者都可以使用这条生产线,只要他们的加工步骤是一样的就行。同样的,一个graph可以供多个session使用,而一个session不一定需要使用graph的全部,可以只使用其中的一部分。

关于graph

定义一个图:graph

g = tf.Graph()
a = tf.constant(2)
b = tf.constant(3)
x = tf.add(a, b)

上面就定义了一个graph。tensorflow会默认给我们建立一个graph,所以g = tf.Graph()这句其实是可以省略的。上面的graph包含3个操作,即op,但凡是op,都需要通过session运行之后,才能得到结果。如果你直接执行print(a),那么输出结果是:

Tensor("a:0", shape=(), dtype=int32)

是一个张量(Tensor)。如果你执行print(tf.Session().run(a)),才能得到2.

关于子图:subgraph

你可以定义多个graph,例如一个graph实现z = x + y,另一个graph实现u = 2 * v

g1 = tf.Graph()
g2 = tf.Graph()
with g1.as_default():
x = tf.constant(2)
y = tf.constant(3)
z = tf.add(x, y)
with g2.as_default():
v = tf.constant(4)
u = tf.mul(2, v)

但通常不建议这么做,原因如下:

  • 运行多个graph需要多个session,而每个session会试图耗尽所有的计算资源,开销太大;
  • graph之间没有数据通道,要人为通过python/numpy传数据;

事实上,你可以把所有的op都定义在一个graph中:

x = tf.constant(2)
y = tf.constant(3)
z = tf.add(x, y)
v = tf.constant(4)
u = tf.mul(2, v)

从上面graph的定义可以看到,x/y/z是一波,u/v是另一波,二者没有任何交集。这相当于在一个graph里有两个独立的subgraph。当你要计算z = x + y时,执行tf.Session().run(z);当你想计算u = 2 * v,就执行tf.Session().run(u),二者完全独立。但更重要的是,二者在同一个session上运行,系统会均衡地给两个subgraph分配合适的计算资源。

关于session

通常我们会显示地定义一个session来运行graph:

x = tf.constant(2)
y = tf.constant(3)
z = tf.add(x, y) with tf.Session() as sess:
result = sess.run(z)
print(result)

输出结果是5。

关于op

tensorflow是一个符号式编程的框架,首先要定义一个graph,然后用一个session来运行这个graph得到结果。graph就是由一系列op构成的。上面的tf.constant()tf.add()tf.mul()都是op,都要现用session运行,才能得到结果。

很多人会以为tf.Variable()也是op,其实不是的。tensorflow里,首字母大写的类,首字母小写的才是op。tf.Variable()就是一个类,不过它包含了各种op,比如你定义了x = tf.Variable([2, 3], name = 'vector'),那么x就具有如下op:

  • x.initializer # 对x做初始化,即赋值为初始值[2, 3]
  • x.value() # 获取x的值
  • x.assign(...) # 赋值操作
  • x.assign_add(...) # 加法操作

tf.Variable()必须先初始化,再做运算,否则会报错。下面的写法就不是很安全,容易导致错误:

W = tf.Variable(tf.truncated_normal([700, 10]))
U = tf.Variable(2 * W)

要把W赋值给U,必须现把W初始化。但很多人往往忘记初始化,从而出错。保险起见,应该按照下面这样写:

W = tf.Variable(tf.truncated_normal([700, 10]))
U = tf.Variable(2 * W.intialized_value())

一个特殊的op: tf.placeholder()

placeholder,翻译过来就是占位符。其实它类似于函数里的自变量。比如z = x + y,那么x和y就可以定义成占位符。占位符,顾名思义,就这是占一个位子,平时不用关心它们的值,当你做运算的时候,你再把你的数据灌进去就行了。是不是和自变量很像?看下面的代码:

a = tf.placeholder(tf.float32, shape=[3]) # a是一个3维向量
b = tf.constant([5, 5, 5], tf.float32)
c = a + b
with tf.Session() as sess:
print sess.run(c, feed_dict = {a: [1, 2, 3]}) # 把[1, 2, 3]灌到a里去

输出结果是[6, 7, 8]。上面代码中出现了feed_dict的概念,其实就是用[1, 2, 3]代替a的意思。相当于在本轮计算中,自变量a的取值为[1, 2, 3]。其实不仅仅是tf.placeholder才可以用feed_dict,很多op都可以。只要tf.Graph.is_feedable(tensor)返回值是True,那么这个tensor就可用用feed_dict来灌入数据。

tf.constant()是直接定义在graph里的,它是graph的一部分,会随着graph一起加载。如果通过tf.constant()定义了一个维度很高的张量,那么graph占用的内存就会变大,加载也会变慢。而tf.placeholder就没有这个问题,所以如果数据维度很高的话,定义成tf.placeholder是更好的选择。

TensorFlow学习笔记1:graph、session和op的更多相关文章

  1. Tensorflow学习笔记2:About Session, Graph, Operation and Tensor

    简介 上一篇笔记:Tensorflow学习笔记1:Get Started 我们谈到Tensorflow是基于图(Graph)的计算系统.而图的节点则是由操作(Operation)来构成的,而图的各个节 ...

  2. Tensorflow学习笔记2019.01.03

    tensorflow学习笔记: 3.2 Tensorflow中定义数据流图 张量知识矩阵的一个超集. 超集:如果一个集合S2中的每一个元素都在集合S1中,且集合S1中可能包含S2中没有的元素,则集合S ...

  3. tensorflow学习笔记——使用TensorFlow操作MNIST数据(2)

    tensorflow学习笔记——使用TensorFlow操作MNIST数据(1) 一:神经网络知识点整理 1.1,多层:使用多层权重,例如多层全连接方式 以下定义了三个隐藏层的全连接方式的神经网络样例 ...

  4. tensorflow学习笔记——使用TensorFlow操作MNIST数据(1)

    续集请点击我:tensorflow学习笔记——使用TensorFlow操作MNIST数据(2) 本节开始学习使用tensorflow教程,当然从最简单的MNIST开始.这怎么说呢,就好比编程入门有He ...

  5. TensorFlow学习笔记0-安装TensorFlow环境

    TensorFlow学习笔记0-安装TensorFlow环境 作者: YunYuan 转载请注明来源,谢谢! 写在前面 系统: Windows Enterprise 10 x64 CPU:Intel( ...

  6. tensorflow学习笔记二:入门基础 好教程 可用

    http://www.cnblogs.com/denny402/p/5852083.html tensorflow学习笔记二:入门基础   TensorFlow用张量这种数据结构来表示所有的数据.用一 ...

  7. TensorFlow学习笔记之--[compute_gradients和apply_gradients原理浅析]

    I optimizer.minimize(loss, var_list) 我们都知道,TensorFlow为我们提供了丰富的优化函数,例如GradientDescentOptimizer.这个方法会自 ...

  8. TensorFlow学习笔记——LeNet-5(训练自己的数据集)

    在之前的TensorFlow学习笔记——图像识别与卷积神经网络(链接:请点击我)中了解了一下经典的卷积神经网络模型LeNet模型.那其实之前学习了别人的代码实现了LeNet网络对MNIST数据集的训练 ...

  9. tensorflow学习笔记——VGGNet

    2014年,牛津大学计算机视觉组(Visual Geometry Group)和 Google DeepMind 公司的研究员一起研发了新的深度卷积神经网络:VGGNet ,并取得了ILSVRC201 ...

  10. TensorFlow学习笔记2-性能分析工具

    TensorFlow学习笔记2-性能分析工具 性能分析工具 在spyder中运行以下代码: import tensorflow as tf from tensorflow.python.client ...

随机推荐

  1. SpringBoot自定义FailureAnalyzer

    官网说明 1.1 创建自己的 FailureAnalyzer FailureAnalyzer是一种在启动时拦截 exception 并将其转换为 human-readable 消息的好方法,包含在故障 ...

  2. Redis-cli相关命令

    > flushdb > SELECT OK []> GET db_number (nil) []> []> flushdb OK []> SELECT OK > ...

  3. warp(图像仿射变换)

    仿射变换是一种二维坐标(x,y)到二维坐标(u,v)的线性变换. 对应的齐次坐标矩阵表示形式为: 仿射变换特点: 直线经仿射变换后依然为直线: ’直线之间的相对位置关系保持不变,平行线经仿射变换后依然 ...

  4. 【CF1247F】Tree Factory(构造)

    题意:给定一棵n个点的树,要求将一条可以随意标号的链通过若干次操作变成这棵树 一次操作是指若v不为根且v的父亲不为根,则将v以及v的子树移到v的父亲的父亲上 要求给出标号方案,操作次数以及方案 n&l ...

  5. js返回上一页并刷新的几种方法

    1.返回上一页 1)<a href="javascript:history.go(-1)"></a> 2)<a href="javascri ...

  6. C# 创建临时文件(转帖)

    1. 在临时文件只能够创建一个临时文件并返回该文件的完整路径 // 在临时文件只能够创建一个临时文件并返回该文件的完整路径: // C:\Documents and Settings\YourName ...

  7. BigDecimal.setScale 处理java小数点[转]

    BigDecimal.setScale()方法用于格式化小数点setScale(1)表示保留一位小数,默认用四舍五入方式 setScale(1,BigDecimal.ROUND_DOWN)直接删除多余 ...

  8. 图解SQLSERVER联合查询和连接查询的区别

      相信很多人都会用SQLSERVER联合查询和连接查询,但是用起来不一定都得心应手,对于其中的原理可能就模糊不清了,要想很牢固地掌握和运用SQL联合查询和连接查询机制,必须对其根本原理有很清晰认识, ...

  9. Django的media配置与富文本编辑器使用的实例

    效果预览 文章列表 添加文章 编辑文章|文章详情|删除文章 项目的基本文件 项目的Model from django.db import models # 导入富文本编辑器相关的模块 from cke ...

  10. elementUI下拉树组件封装

    使用组件:Popover 弹出框.Tree 树形控件 和 input 输入框 用法: 1.新建一个.vue文件,粘贴以下组件封装的代码(完全可以使用) 2.在页面需要使用下拉树的地方调用即可. (1) ...