4.1 多维特征

目前为止,我们探讨了单变量/特征的回归模型,现在我们对房价模型增加更多的特征,例如房间数楼层等,构成一个含有多个变量的模型,模型中的特征为(x1,x2,...xn)

增添更多特征后,我们引入一系列新的注释:

n 代表特征的数量

x(i)代表第 i个训练实例,是特征矩阵中的第$i$行,是一个向量(vector)。

比方说,上图的

xj(i)代表特征矩阵中第 i行的第 j个特征,也就是第 i个训练实例的第 j个特征。

如上图的x(2)2=3,x(2)3=2,

支持多变量的假设 h 表示为:hΘ(x)=Θ01x12x2nxn

这个公式中有n+1个参数和n个变量,为了使得公式能够简化一些,引入x0=1,则公式转化为:hΘ(x)=Θ0x01x12x2nxn

此时模型中的参数是一个n+1维的向量,任何一个训练实例也都是n+1维的向量,特征矩阵X的维度是 m*(n+1)。 因此公式可以简化为:hΘ(x)=ΘTX,其中上标T代表矩阵转置。

4.2 多变量梯度下降

  与单变量线性回归类似,在多变量线性回归中,我们也构建一个代价函数,则这个代价函数是所有建模误差的平方和,即:

其中:hΘ(x)=ΘTX =Θ0x01x12x2nxn

我们的目标和单变量线性回归问题中一样,是要找出使得代价函数最小的一系列参数。 多变量线性回归的批量梯度下降算法为:

即:

求导数后得到:

当n>=1时,

我们开始随机选择一系列的参数值,计算所有预测结果后,再给所有的参数一个新的值,入职循环直到收敛。

4.3 梯度下降法实践1-特征缩放

在我们面对多维特征问题的时候,我们要保证这些特征都具有相近的尺度,这将帮助梯度下降算法更快地收敛。

以房价问题为例,假设我们使用两个特征,房屋的尺寸和房间的数量,尺寸的值为 0-2000平方英尺,而房间数量的值则是0-5,以两个参数分别为横纵坐标,绘制代价函数的等高线图能,看出图像会显得很扁,梯度下降算法需要非常多次的迭代才能收敛。

解决的方法是尝试将所有特征的尺度都尽量缩放到-1到1之间。如图:

最简单的方法是令:

 有助于此的两种技术是特征缩放和均值归一化。特征缩放涉及将输入值除以输入变量的范围(即最大值减去最小值),从而得到的新范围仅为1。平均归一化涉及从输入值中减去输入变量的平均值。输入变量导致输入变量的新平均值仅为零。

4.4 梯度下降法实践2-学习率

梯度下降算法收敛所需要的迭代次数根据模型的不同而不同,我们不能提前预知,我们可以绘制迭代次数和代价函数的图表来观测算法在何时趋于收敛。

也有一些自动测试是否收敛的方法,例如将代价函数的变化值与某个阀值(例如0.001)进行比较,但通常看上面这样的图表更好。

梯度下降算法的每次迭代受到学习率的影响,如果学习率a过小,则达到收敛所需的迭代次数会非常高;如果学习率a过大,每次迭代可能不会减小代价函数,可能会越过局部最小值导致无法收敛。

通常可以考虑尝试些学习率:

a=0.01,0.03,0.1,0.3,1,3,10

4.5 特征和多项式回归

如房价预测问题,

hΘ(x)=

4、、多变量线性回归(Linear Regression with Multiple Variables)的更多相关文章

  1. 机器学习(三)--------多变量线性回归(Linear Regression with Multiple Variables)

    机器学习(三)--------多变量线性回归(Linear Regression with Multiple Variables) 同样是预测房价问题  如果有多个特征值 那么这种情况下  假设h表示 ...

  2. 机器学习 (二) 多变量线性回归 Linear Regression with Multiple Variables

    文章内容均来自斯坦福大学的Andrew Ng教授讲解的Machine Learning课程,本文是针对该课程的个人学习笔记,如有疏漏,请以原课程所讲述内容为准.感谢博主Rachel Zhang 的个人 ...

  3. 斯坦福第四课:多变量线性回归(Linear Regression with Multiple Variables)

    4.1  多维特征 4.2  多变量梯度下降 4.3  梯度下降法实践 1-特征缩放 4.4  梯度下降法实践 2-学习率 4.5  特征和多项式回归 4.6  正规方程 4.7  正规方程及不可逆性 ...

  4. python实现多变量线性回归(Linear Regression with Multiple Variables)

    本文介绍如何使用python实现多变量线性回归,文章参考NG的视频和黄海广博士的笔记 现在对房价模型增加更多的特征,例如房间数楼层等,构成一个含有多个变量的模型,模型中的特征为( x1,x2,..., ...

  5. Ng第四课:多变量线性回归(Linear Regression with Multiple Variables)

    4.1  多维特征 4.2  多变量梯度下降 4.3  梯度下降法实践 1-特征缩放 4.4  梯度下降法实践 2-学习率 4.5  特征和多项式回归 4.6  正规方程 4.7  正规方程及不可逆性 ...

  6. 机器学习第4课:多变量线性回归(Linear Regression with Multiple Variables)

    4.1  多维特征 目前为止,我们探讨了单变量/特征的回归模型,现在我们对房价模型增加更多的特征, 例如房间数楼层等,构成一个含有多个变量的模型,模型中的特征为(x1,x2,...,xn).

  7. Stanford机器学习---第二讲. 多变量线性回归 Linear Regression with multiple variable

    原文:http://blog.csdn.net/abcjennifer/article/details/7700772 本栏目(Machine learning)包括单参数的线性回归.多参数的线性回归 ...

  8. 斯坦福机器学习视频笔记 Week2 多元线性回归 Linear Regression with Multiple Variables

    相比于week1中讨论的单变量的线性回归,多元线性回归更具有一般性,应用范围也更大,更贴近实际. Multiple Features 上面就是接上次的例子,将房价预测问题进行扩充,添加多个特征(fea ...

  9. [Machine Learning] 多变量线性回归(Linear Regression with Multiple Variable)-特征缩放-正规方程

    我们从上一篇博客中知道了关于单变量线性回归的相关问题,例如:什么是回归,什么是代价函数,什么是梯度下降法. 本节我们讲一下多变量线性回归.依然拿房价来举例,现在我们对房价模型增加更多的特征,例如房间数 ...

随机推荐

  1. C# 实现实体类和Xml转换

    一.实体类转换成XML 将实体类转换成XML需要使用XmlSerializer类的Serialize方法,将实体类序列化 public static string XmlSerialize<T& ...

  2. ASPOSE的示例下载地址

    ftp://112.124.7.170/ASPOSE/Aspose.Words_16.3.0.zip http://blog.163.com/haolongqin@126/blog/static/10 ...

  3. 有关shell中冒号的特殊用法

    有关shell中冒号的特殊用法,供朋友们参考. : ${VAR:=DEFAULT} 当变量VAR没有声明或者为NULL时,将VAR设置为默认值DEFAULT.如果不在前面加上:命令,那么就会把${VA ...

  4. 一次Oday提权批量拿取商城服务器root权限

    此问题影响范围巨大,涉及到所有通过niushop开发的商城,希望通过这篇文章能够引起大家的重视.(注:演示的所用商城已经修复了此漏洞) 严重性:特级 解决方案:1.在用户访问漏洞页时对其身份进行判断: ...

  5. django之模型类在视图中的应用

    一:模型类直接从把前端表单传入的值,进行存储. @csrf_exempt def regist(request): if request.method == 'POST': form = UserFo ...

  6. java 小数精确计算

    小数精确计算 System.out.println(2.00 -1.10);//0.8999999999999999 上面的计算出的结果不是 0.9,而是一连串的小数.问题在于1.1这个数字不能被精确 ...

  7. Oracle 11g 详细安装步骤

    一.Oracle 下载 注意Oracle分成两个文件,下载完后,将两个文件解压到同一目录下即可. 路径名称中,最好不要出现中文,也不要出现空格等不规则字符. 官方下地址: http://www.ora ...

  8. vue项目-本机ip地址访问

    修改 在 vue项目文件夹中的 package.json scripts >dev 添加 --host 0.0.0.0 "dev": "webpack-dev-se ...

  9. Flask学习笔记03之路由

    1. endpoint from flask import Flask, url_for # 实例化一个Flask对象 app = Flask(__name__) # 打印默认配置信息 # 引入开发环 ...

  10. 阿里云如何打破Oracle迁移上云的壁垒

    2018第九届中国数据库技术大会,阿里云数据库产品专家萧少聪带来以阿里云如何打破Oracle迁移上云的壁垒为题的演讲.Oracle是指“数据库管理系统”,面对Oracle迁移上云的壁垒,阿里云如何能够 ...