#include <iostream>
#include <sstream>
#include <fstream>
#include <algorithm>
#include <vector> void Conv(std::vector<std::vector<int> > &vv_image, std::vector<std::vector<int> > &vv_filter, std::vector<std::vector<int> > &Feature_map) {
size_t new_col=vv_image.at().size()-vv_filter.at().size()+;
size_t new_row=vv_image.size()-vv_filter.size()+;
for(size_t i=; i<new_row; ++i) {
std::vector<int> v_tmp;
v_tmp.clear();
for(size_t j=; j<new_col; ++j) {
int sum_tmp=;
for(size_t k=; k<vv_filter.size(); ++k) {
for(size_t l=; l<vv_filter.at().size(); ++l) {
sum_tmp += vv_filter.at(k).at(l) * vv_image.at(i+k).at(j+l);
}
}
v_tmp.push_back(sum_tmp);
}
Feature_map.push_back(v_tmp);
}
} template <class T>
void ReadMatFromFile(std::string &filename, std::vector<std::vector<T> > &lines_feat) {
std::ifstream vm_info(filename.c_str());
std::string lines;
T var;
std::vector<T> row; lines_feat.clear(); while(!vm_info.eof()) {
getline(vm_info, lines);
if(lines.empty())
break;
std::replace(lines.begin(), lines.end(), ',', ' ');
std::stringstream stringin(lines);
row.clear(); while(stringin >> var) {
row.push_back(var);
}
lines_feat.push_back(row);
}
} template <class T>
void Display2DVector(const std::vector<std::vector<T> > &vv) {
for(size_t i=;i<vv.size();++i) {
for(typename::std::vector<T>::const_iterator it=vv.at(i).begin();it!=vv.at(i).end();++it) {
std::cout<<*it<<" ";
}
std::cout<<"\n";
}
std::cout<<"--------the total of the 2DVector is "<<vv.size()<<std::endl;
} int main() {
std::string image_data("image.dat"), filter_data("filter.dat");
std::vector<std::vector<int> > vv_image, vv_filter; ReadMatFromFile(image_data, vv_image);
ReadMatFromFile(filter_data, vv_filter); std::vector<std::vector<int> > Feature_map; Conv(vv_image, vv_filter, Feature_map);
Display2DVector(Feature_map); return ;
}

卷积神经网络(ConvNets)中卷积的实现的更多相关文章

  1. 深度学习原理与框架-卷积神经网络基本原理 1.卷积层的前向传播 2.卷积参数共享 3. 卷积后的维度计算 4. max池化操作 5.卷积流程图 6.卷积层的反向传播 7.池化层的反向传播

    卷积神经网络的应用:卷积神经网络使用卷积提取图像的特征来进行图像的分类和识别       分类                        相似图像搜索                        ...

  2. DeepLearning.ai学习笔记(四)卷积神经网络 -- week2深度卷积神经网络 实例探究

    一.为什么要进行实例探究? 通过他人的实例可以更好的理解如何构建卷积神经网络,本周课程主要会介绍如下网络 LeNet-5 AlexNet VGG ResNet (有152层) Inception 二. ...

  3. deeplearning.ai 卷积神经网络 Week 1 卷积神经网络 听课笔记

    1. 传统的边缘检测(比如Sobel)手工设计了3*3的filter(或者叫kernel)的9个权重,在深度学习中,这9个权重都是学习出来的参数,会比手工设计的filter更好,不但可以提取90度.0 ...

  4. 深度学习方法(十三):卷积神经网络结构变化——可变形卷积网络deformable convolutional networks

    上一篇我们介绍了:深度学习方法(十二):卷积神经网络结构变化--Spatial Transformer Networks,STN创造性地在CNN结构中装入了一个可学习的仿射变换,目的是增加CNN的旋转 ...

  5. deeplearning.ai 卷积神经网络 Week 2 卷积神经网络经典架构

    1. Case study:学习经典网络的原因是它们可以被迁移到其他任务中. 1.1)几种经典的网络: a)LeNet-5(LeCun et al., 1998. Gradient-based lea ...

  6. deeplearning.ai 卷积神经网络 Week 1 卷积神经网络

    1. 传统的边缘检测(比如Sobel)手工设计了3*3的filter(或者叫kernel)的9个权重,在深度学习中,这9个权重都是学习出来的参数,会比手工设计的filter更好,不但可以提取90度.0 ...

  7. CS231n课程笔记翻译9:卷积神经网络笔记

    译者注:本文翻译自斯坦福CS231n课程笔记ConvNet notes,由课程教师Andrej Karpathy授权进行翻译.本篇教程由杜客和猴子翻译完成,堃堃和李艺颖进行校对修改. 原文如下 内容列 ...

  8. 【cs231n】卷积神经网络

    较好的讲解博客: 卷积神经网络基础 深度卷积模型 目标检测 人脸识别与神经风格迁移 译者注:本文翻译自斯坦福CS231n课程笔记ConvNet notes,由课程教师Andrej Karpathy授权 ...

  9. 一目了然卷积神经网络 - An Intuitive Explanation of Convolutional Neural Networks

    An Intuitive Explanation of Convolutional Neural Networks 原文地址:https://ujjwalkarn.me/2016/08/11/intu ...

  10. paper 162:卷积神经网络(CNN)解析

    卷积神经网络(CNN)解析: 卷积神经网络CNN解析 概揽 Layers used to build ConvNets 卷积层Convolutional layer 池化层Pooling Layer ...

随机推荐

  1. [每日一讲] Python系列:字典

    #! /usr/bin/python # coding:utf-8 """ DATA STRUCTURE Container: Mapping (Another cont ...

  2. ef 分页

    public List<TEntity> FindList(Expression<Func<TEntity, bool>> predicate, Paginatio ...

  3. PHP基础教程 php 网络上关于设计模式一些总结

    1.单例模式 单例模式顾名思义,就是只有一个实例.作为对象的创建模式,单例模式确保某一个类只有一个实例,而且自行实例化并向整个系统提供这个实例. 单例模式的要点有三个: 一是某个类只能有一个实例; 二 ...

  4. Python 爬虫十六式 - 第七式:正则的艺术

    RE:用匹配来演绎编程的艺术 学习一时爽,一直学习一直爽   Hello,大家好,我是 Connor,一个从无到有的技术小白.上一次我们说到了 pyquery 今天我们将迎来我们数据匹配部分的最后一位 ...

  5. asp.net 如何实现大文件断点上传功能?

    之前仿造uploadify写了一个HTML5版的文件上传插件,没看过的朋友可以点此先看一下~得到了不少朋友的好评,我自己也用在了项目中,不论是用户头像上传,还是各种媒体文件的上传,以及各种个性的业务需 ...

  6. select * from (XXXXX)[字符]——写法解析

    步骤:1.先执行括号里的语句:查询 select id from three ,将查询出来的数据作为一个结果集 取名为 a2.然后 再 select * from a 查询a ,将 结果集a 全部查询 ...

  7. 前端每日实战:161# 视频演示如何用纯 CSS 创作一张纪念卓别林的卡片(没有笑声的一天就是被荒废的一天)

    效果预览 按下右侧的"点击预览"按钮可以在当前页面预览,点击链接可以全屏预览. https://codepen.io/comehope/pen/WaaBNV 可交互视频 此视频是可 ...

  8. 64位 Qt5.12 MySql 连接问题

    关于怎么检查Qt是否带MySql驱动 ,到Qt安装目录下 plugins\sqldrivers下寻找是否有qsqlmysql.dll文件      例如:F:\Qt\Qt5.9.6\5.9.6\msv ...

  9. 使用SSH和Nginx做内网HTTP映射

    https://blog.csdn.net/imdyf/article/details/80143991

  10. 一、基础篇--1.1Java基础-抽象类和接口的区别

    抽象类和接口的区别 抽象类和接口在设计层面的区别主要体现在:接口是对动作的抽象,抽象类是对根源.类的抽象.抽象类表示的是,这个对象是什么,接口表示的是,这个对象可以做什么. 比如,男人.女人是人,人是 ...