题目描述

BB

痛失一血(打了场Comet OJ回来就没了)

不过后来又刷了一道水题

题解

LCM+取模=结论题

结论1

\(gcd(k^{2^i}+1,k^{2^j}+1)=1 (i\neq j 且k为偶数)\)

证明:

设i<j

若存在\(q\mid k^{2^i}+1\),则\(k^{2^i}\equiv -1(mod \;q)\)

那么\(k^{2^{i+k}}\equiv 1(mod \;q)\)(k>0),则\(k^{2^j} \equiv 1(mod \;q)\),\(k^{2^j}+1 \equiv 2(mod \;q)\)

update:注意上面的k,此k非彼k

当q>2时无解,当q=2时由于k为偶数,所以k的幂+1为奇数,不存在为2的因子(即无解)

所以gcd=1

结论2

\(gcd(k^{2^i}+1,k^{2^j}+1)=2 (i\neq j 且k为奇数)\)

证明:

同上,可以发现只存在q=2的公因数

乱搞

简单又自然

先特判掉模数为2

①K不是P的倍数

如果K不是P的倍数,那么把式子拆开后变成

\(ans=\sum_{i=0}^{2^{r-l+1}-1}{({k^{2^l}})^i}\)

设\(a={k^{2^l}}\),则\(ans=\sum_{i=0}^{2^{r-l+1}-1}{a^i}\)

2l和\(2^r\)可以快速幂求,因为a0=ap-1 mod p=1,可以发现模数实际上是(P-1)

剩下的就是一个等比数列求和

因为K不是P的倍数且P为质数,所以\(k^{2^{i}}\)必定不为0,\(k^{2^{i}}-1\)(等比数列求和的分母)不会为-1

但是\(k^{2^{i}}\)可能为1,这样的话\(ans=2^{r-l+1}\)

②K是P的倍数

显然ans=1


如果K为奇数,那么就还要除掉多出来的的2R-L

code

#include <algorithm>
#include <iostream>
#include <cstdlib>
#include <cstring>
#include <cstdio>
#define fo(a,b,c) for (a=b; a<=c; a++)
#define fd(a,b,c) for (a=b; a>=c; a--)
using namespace std; long long K,L,R,mod,Mod,S,ans;
int Q,i,j,k,l; long long qpower(long long a,long long b)
{
long long ans=1; while (b)
{
if (b&1)
ans=ans*a%mod; a=a*a%mod;
b>>=1;
} return ans;
} void js()
{
long long s1,s2,S1,S2; --mod;
s1=qpower(2,R+1);
s2=qpower(2,L); s1-=s2;
if (s1<0)
s1+=mod;
++mod; S1=qpower(K,s1);
S2=qpower(K,s2); if (S2>1)
ans=(S1*S2%mod-1)*qpower(S2-1,Mod)%mod;
else
ans=qpower(2,R-L+1); if (ans<0)
ans+=mod;
} int main()
{
// freopen("51nod_1820_4_in.txt","r",stdin);
// freopen("51nod1820.in","r",stdin);
// freopen("51nod1820.out","w",stdout); scanf("%d",&Q);
for (;Q;--Q)
{
scanf("%lld%lld%lld%lld",&K,&L,&R,&mod);
Mod=mod-2; if (mod==2)
{
if (K&1)
printf("0\n");
else
printf("1\n"); continue;
} if (!(K%mod))
ans=1;
else
{
ans=0;
js();
} if (K&1)
ans=ans*qpower((mod+1)/2,R-L)%mod; printf("%lld\n",ans);
}
}

51nod1820 长城之旅的更多相关文章

  1. 勤拂拭软件Android开发之旅(1) 之 Android 开发环境搭建

    勤拂拭软件工作室原创出品,欢迎转载,欢迎交流. 转载请注明原文:http://www.cnblogs.com/wangleiblog/p/6019063.html 勤拂拭软件Android开发之旅目录 ...

  2. 【Linux探索之旅】第四部分第三课:文件传输,潇洒同步

    内容简单介绍 .第四部分第三课:文件传输.潇洒同步 2.第四部分第四课:分析网络.隔离防火 文件传输.潇洒同步 这一课的内容相对简单,所以我们慢慢享用. 经过上一课的学习.我们已经知道怎样远程连接到其 ...

  3. Android开发之旅(1) 之 Android 开发环境搭建

    工作室原创出品,欢迎转载,欢迎交流. 转载请注明原文:http://www.cnblogs.com/wangleiblog/p/6019063.html Android开发之旅目录 1 前言 很多朋友 ...

  4. Linq之旅:Linq入门详解(Linq to Objects)

    示例代码下载:Linq之旅:Linq入门详解(Linq to Objects) 本博文详细介绍 .NET 3.5 中引入的重要功能:Language Integrated Query(LINQ,语言集 ...

  5. WCF学习之旅—第三个示例之四(三十)

           上接WCF学习之旅—第三个示例之一(二十七)               WCF学习之旅—第三个示例之二(二十八)              WCF学习之旅—第三个示例之三(二十九)   ...

  6. 【C#代码实战】群蚁算法理论与实践全攻略——旅行商等路径优化问题的新方法

    若干年前读研的时候,学院有一个教授,专门做群蚁算法的,很厉害,偶尔了解了一点点.感觉也是生物智能的一个体现,和遗传算法.神经网络有异曲同工之妙.只不过当时没有实际需求学习,所以没去研究.最近有一个这样 ...

  7. Hadoop学习之旅二:HDFS

    本文基于Hadoop1.X 概述 分布式文件系统主要用来解决如下几个问题: 读写大文件 加速运算 对于某些体积巨大的文件,比如其大小超过了计算机文件系统所能存放的最大限制或者是其大小甚至超过了计算机整 ...

  8. .NET跨平台之旅:在生产环境中上线第一个运行于Linux上的ASP.NET Core站点

    2016年7月10日,我们在生产环境中上线了第一个运行于Linux上的ASP.NET Core站点,这是一个简单的提供后端服务的ASP.NET Core Web API站点. 项目是在Windows上 ...

  9. 【Knockout.js 学习体验之旅】(3)模板绑定

    本文是[Knockout.js 学习体验之旅]系列文章的第3篇,所有demo均基于目前knockout.js的最新版本(3.4.0).小茄才识有限,文中若有不当之处,还望大家指出. 目录: [Knoc ...

随机推荐

  1. mysql explain中的列

    参考:<高性能mysql>附录D EXPLAIN MySql将Select查询分为简单和复杂类型,复杂类型分为3大类:简单子查询,所谓的派生表(在派生表的子查询),以及UNION查询. 列 ...

  2. lambda一些查询语句

    <!--得分数据结构-->1 <Score> <studentid>1</studentid> <courseid>1</course ...

  3. java 对象 json 集合 数组 互转

    1.先定义一个类对象 package com.basics; import com.alibaba.fastjson.JSONObject; import java.util.List; import ...

  4. 【Linux开发】计算机底层是如何访问显卡的?

    1. 显卡驱动是怎么控制显卡的, 就是说, 使用那些指令控制显卡, 通过端口么? 2. DirectX 或 OpenGL 或 CUDA 或 OpenCL 怎么找到显卡驱动, 显卡驱动是不是要为他们提供 ...

  5. vue封装一些常用组件loading、switch、progress

    vue封装一些常用组件loading.switch.progress github文档https://github.com/zengjielin/vue-component-library loadi ...

  6. [转帖]Linux shell中2>&1的含义解释 (全网最全,看完就懂)

    Linux shell中2>&1的含义解释 (全网最全,看完就懂) https://blog.csdn.net/zhaominpro/article/details/82630528   ...

  7. EML文件(MIME邮件)格式分析

    电子邮件普遍遵循的邮件技术规范.MIME邮件由邮件头和邮件体两部分组成.邮件头包括:标题,送信人,收信人,创建日期,邮件体内容类型和邮件体编码方式等内容.邮件体包括:正文,超文本,内嵌数据和附件等内容 ...

  8. echart 柱状图 两个纵轴坐标 刻度不一样

    在使用echart的过程中, 有的时候柱状图会使用两个纵坐标, 如果两个纵坐标的最大值是一样的还好,这样刻度也会一样. 但是多数情况下最大值是不一样的, 这样就造成了,刻度线很乱,显示不均匀. 解决办 ...

  9. Java 14 可能带来什么新特性?

    JDK/Java 13 在一个月前已经发布,该版本带来了 5 大新特性,笔者观察到其中的 Text Blocks(文本块)特性似乎被讨论最多. 文本块特性与常见的 Python "" ...

  10. [BZOJ 3509] [CodeChef] COUNTARI (FFT+分块)

    [BZOJ 3509] [CodeChef] COUNTARI (FFT+分块) 题面 给出一个长度为n的数组,问有多少三元组\((i,j,k)\)满足\(i<j<k,a_j-a_i=a_ ...