http://acm.hdu.edu.cn/showproblem.php?pid=4336

题意:有n种卡片,一个包里会包含至多一张卡片,第i种卡片在某个包中出现的次数为pi,问将所有种类的卡片集齐需要买的包的期望。 
注意存在某个包中一张也没有。

分析:状态压缩有个挺显然提示,N<=20,这是在次落落的在提示你。

我们首先定义: dp[st] 表示 st 状态到目标状态 的期望是多少 ; st转化为二进制0表示当前状态没有这个bit的卡片 , 1表示当前状态有这个bit位的卡片;

然后有如下的转移:1. 没有卡片-> dp[st]->dp[st]   2.有存在的卡片;dp[st]->dp[st]  3.有没有存在的卡片  :dp[st]->dp[st|(1<<bit)]

所以我们可以得到如下公式:

则dp[i]=no*(dp[i]+1)+∑pp[j]*(dp[i]+1)+∑pp[k]*(dp[i|(1<<k)]+1).----(1)

no:表示没有卡片的概率,∑pp[j]表示第j种卡片已经存在,∑pp[k]表示第j种卡片当前还没有。

显然no+∑pp[j]+∑pp[k]=1,所以花间得dp[i]=1+(no+∑pp[j])*dp[i]+∑pp[k]*dp[i|(1<<k)],dp[1<<n-1]=0递推求出dp[0]即可。

需要注意的是:(1)公式是需要进行化简的 , 需要将dp[i] 提取出来

#include<bits/stdc++.h>
using namespace std;
double dp[(<<)+],p[];
int main()
{
int n;
while(~scanf("%d",&n))
{
memset(dp,,sizeof(dp));
double no=;
for(int i= ; i<n ; i++)
{
scanf("%lf",&p[i]);
no+=p[i];
}
no=-no;
int all=(<<n)-;
dp[all]=;
for(int st=all- ; st>= ; st--)///枚举的状态
{ double pj=,pk=;
for(int j= ; j<n ; j++)
{
if(!(st&(<<j)))
{
pk+=p[j]*(dp[st|(<<j)]);
}
else
{
pj+=p[j];
}
} dp[st]=(+pk)*1.0/(-no-pj); }
printf("%.4f\n",dp[]);
} }

HDU4336 Card Collector (概率dp+状压dp)的更多相关文章

  1. 【BZOJ】1076 [SCOI2008]奖励关 期望DP+状压DP

    [题意]n种宝物,k关游戏,每关游戏给出一种宝物,可捡可不捡.每种宝物有一个价值(有负数).每个宝物有前提宝物列表,必须在前面的关卡取得列表宝物才能捡起这个宝物,求期望收益.k<=100,n&l ...

  2. Luogu4547 THUWC2017 随机二分图 概率、状压DP

    传送门 考虑如果只有$0$组边要怎么做.因为$N \leq 15$,考虑状压$DP$.设$f_i$表示当前的匹配情况为$i$时的概率($i$中$2^0$到$2^{N-1}$表示左半边的匹配情况,$2^ ...

  3. 洛谷 P3343 - [ZJOI2015]地震后的幻想乡(朴素状压 DP/状压 DP+微积分)

    题面传送门 鸽子 tzc 竟然来补题解了,奇迹奇迹( 神仙题 %%%%%%%%%%%% 解法 1: 首先一件很明显的事情是这个最小值可以通过类似 Kruskal 求最小生成树的方法求得.我们将所有边按 ...

  4. CCF 201312-4 有趣的数 (数位DP, 状压DP, 组合数学+暴力枚举, 推公式, 矩阵快速幂)

    问题描述 我们把一个数称为有趣的,当且仅当: 1. 它的数字只包含0, 1, 2, 3,且这四个数字都出现过至少一次. 2. 所有的0都出现在所有的1之前,而所有的2都出现在所有的3之前. 3. 最高 ...

  5. hdu 4352 "XHXJ's LIS"(数位DP+状压DP+LIS)

    传送门 参考博文: [1]:http://www.voidcn.com/article/p-ehojgauy-ot.html 题解: 将数字num字符串化: 求[L,R]区间最长上升子序列长度为 K ...

  6. [转]状态压缩dp(状压dp)

    状态压缩动态规划(简称状压dp)是另一类非常典型的动态规划,通常使用在NP问题的小规模求解中,虽然是指数级别的复杂度,但速度比搜索快,其思想非常值得借鉴. 为了更好的理解状压dp,首先介绍位运算相关的 ...

  7. 状态压缩dp 状压dp 详解

    说到状压dp,一般和二进制少不了关系(还常和博弈论结合起来考,这个坑我挖了还没填qwq),二进制是个好东西啊,所以二进制的各种运算是前置知识,不了解的话走下面链接进百度百科 https://baike ...

  8. hdu4336 Card Collector(概率DP,状态压缩)

    In your childhood, do you crazy for collecting the beautiful cards in the snacks? They said that, fo ...

  9. hdu4336 Card Collector 概率dp(或容斥原理?)

    题意: 买东西集齐全套卡片赢大奖.每个包装袋里面有一张卡片或者没有. 已知每种卡片出现的概率 p[i],以及所有的卡片种类的数量 n(1<=n<=20). 问集齐卡片需要买东西的数量的期望 ...

随机推荐

  1. 3 Vue.js基础

    Vue中的过滤器.钩子函数.指令.字符串填充.以及部分方法使用的案例(操作表单) <!DOCTYPE html> <html lang="en"> < ...

  2. [12期]Mysql案例分析

    腾讯视频源:http://v.qq.com/vplus/0ef1d6371912bf6d083dce956f48556c 访问新闻版块,去掉?ID=X的参数以后报错 参数去掉,没有报错,显示正常,说明 ...

  3. 结合element-ui封装的一个分页函数

    第一次写博客,专门写给菜鸟看的,如果你是老鸟,你可以直接无视. 首先我们从豆瓣api获取到电影的数据列表 然后我们把他们切成一块一块的小数组 最后的数组将会是这样  原理就是以上的内容,接下来直接附上 ...

  4. linux相关(find/grep/awk/sed/rpm)

    如何查找特定的文件: find :在指定目录下查找文件 find -name "filename" :从当前目录查找文件 find / -name "filename&q ...

  5. 回溯---IP 地址划分

    IP 地址划分 93. Restore IP Addresses(Medium) Given "25525511135", return ["255.255.11.135 ...

  6. C#linq计算总条数并去重复的写法

    一,在实际需求中我们会存在选出了一个集合,而这时我们需要通过集合的某几个字段来计算重复,和统计重复的数量,这时我们可以用到linq来筛选和去重复. 二,如下代码: using System; usin ...

  7. vue.js(13)--按键修饰符

    v-on监听事件时可添加按键修饰符 <!-- 只有在 `key` 是 `Enter` 时调用 `vm.submit()` --> <input v-on:keyup.enter=&q ...

  8. box-shadow四个边框设置阴影样式

    其实对于box-shadow,老白我也是一知半解,之前用的时候直接复制已有的,也没有仔细思考过box-shadow的数值分别对应什么,最后导致阴影的边如何自由控制,苦于懒人一个一直没有正式去学习,今天 ...

  9. Scrapy抓取jobbole数据

    1.python版本3.6.1 2.python编辑器:JetBrains PyCharm 2.安装virtualenvwrapper-win pip3 install virtualenvwrapp ...

  10. Apache Mesos1.0.1 编译安装部署教程(ubuntu)

    参考资料 官方文档:http://mesos.apache.org/documentation 中文翻译:http://mesos.mydoc.io/ GitHub:https://github.co ...