Acwing-284-金字塔(区间DP)
链接:
https://www.acwing.com/problem/content/description/286/
题意:
虽然探索金字塔是极其老套的剧情,但是有一队探险家还是到了某金字塔脚下。
经过多年的研究,科学家对这座金字塔的内部结构已经有所了解。
首先,金字塔由若干房间组成,房间之间连有通道。
如果把房间看作节点,通道看作边的话,整个金字塔呈现一个有根树结构,节点的子树之间有序,金字塔有唯一的一个入口通向树根。
并且,每个房间的墙壁都涂有若干种颜色的一种。
探险队员打算进一步了解金字塔的结构,为此,他们使用了一种特殊设计的机器人。
这种机器人会从入口进入金字塔,之后对金字塔进行深度优先遍历。
机器人每进入一个房间(无论是第一次进入还是返回),都会记录这个房间的颜色。
最后,机器人会从入口退出金字塔。
显然,机器人会访问每个房间至少一次,并且穿越每条通道恰好两次(两个方向各一次), 然后,机器人会得到一个颜色序列。
但是,探险队员发现这个颜色序列并不能唯一确定金字塔的结构。
现在他们想请你帮助他们计算,对于一个给定的颜色序列,有多少种可能的结构会得到这个序列。
因为结果可能会非常大,你只需要输出答案对109 取模之后的值。
思路:
F[l][r]为l-r的组成情况, 对于每个l-r, l为根, 则令l+1-k为第一颗子树, 后面的k+1-r为其他部分, 即可递归求解, 同时记忆化搜索.
代码:
#include <bits/stdc++.h>
using namespace std;
typedef long long LL;
const int MOD = 1e9;
char s[500];
LL F[500][500];
LL Dfs(int l, int r)
{
// cout << l << ' ' << r << endl;
if (l > r)
return 0;
if (s[l] != s[r])
return 0;
if (l == r)
return 1;
if (F[l][r] != -1)
return F[l][r];
F[l][r] = 0;
for (int k = l+1;k < r;k++)
F[l][r] = (F[l][r] + Dfs(l+1, k)*Dfs(k+1, r))%MOD;
return F[l][r];
}
int main()
{
scanf("%s", s+1);
int n = strlen(s+1);
memset(F, -1, sizeof(F));
printf("%lld\n", Dfs(1, n));
return 0;
}
Acwing-284-金字塔(区间DP)的更多相关文章
- 『金字塔 区间dp』
金字塔 Description 虽然探索金字塔是极其老套的剧情,但是这一队 探险家还是到了某金字塔脚下.经过多年的研究,科 学家对这座金字塔的内部结构已经有所了解.首先, 金字塔由若干房间组成,房间之 ...
- $CH5302$ 金字塔 区间$DP$/计数类$DP$
CH Sol f[l][r]表示l到r这段区间对应的金字塔结构种数 发现是f[l][r]是可以由比它小的区间推出来的 比如已知f[l+1][k],f[k+1][r],不难想到f[l][r]+=f[l+ ...
- 【CH5302】金字塔 区间DP
题目大意:给定一棵树,树上点有标记,给定一棵树的\(dfs\)序标记序列,求有多少种可能的子树形态.(子树之间有序) 这是一道区间计数类DP,涉及到树的\(dfs\)序. 这道题区间的划分点 \(k\ ...
- CH 5302 金字塔(区间DP)
CH 5302 金字塔 \(solution:\) 很神奇的一道题目,当时看到还以为是一道字符串求回文子串的题目.但是数据范围很小,而且只知道回文串也不好做.但是我们观察可得,如果是深度搜索便利,那么 ...
- Acwing-282-石子合并(区间DP)
链接: https://www.acwing.com/problem/content/284/ 题意: 设有N堆石子排成一排,其编号为1,2,3,-,N. 每堆石子有一定的质量,可以用一个整数来描述, ...
- 【DP】区间DP入门
在开始之前我要感谢y总,是他精彩的讲解才让我对区间DP有较深的认识. 简介 一般是线性结构上的对区间进行求解最值,计数的动态规划.大致思路是枚举断点,然后对断点两边求取最优解,然后进行合并从而得解. ...
- 区间dp入门+例题
区间dp作为线性dp的一种,顾名思义是以区间作为阶段进行dp的,使用它的左右端点描述每个维度,决策往往是从小状态向大状态转移中推得的.它跟st表等树状结构有着相似的原理---向下划分,向上递推. dp ...
- 多边形——————区间dp
原题链接:https://www.acwing.com/problem/content/285/ 题意简单来说就是:给你一个环,断掉一条边使其成为一个链,用这个链跑dp,求最大得分. 首先这不是一道板 ...
- 【BZOJ-4380】Myjnie 区间DP
4380: [POI2015]Myjnie Time Limit: 40 Sec Memory Limit: 256 MBSec Special JudgeSubmit: 162 Solved: ...
- 【POJ-1390】Blocks 区间DP
Blocks Time Limit: 5000MS Memory Limit: 65536K Total Submissions: 5252 Accepted: 2165 Descriptio ...
随机推荐
- bean初始化和销毁的几种方式
Bean生命周期 Bean创建 -->初始化 -->销毁 1.自定义Bean初始化 和销毁的方法 init-method和destroy-method 创建Bike类 public cla ...
- Django 数据库操作
Django 数据库操作 Django运算表达式与Q对象/F对象 1 模型查询 概述: 1 查询集:表示从数据库中获取的对象的集合 2 查询集可以有多个过滤器,通过 逻辑运算符连接 3 过滤器就是一个 ...
- Spring Bean 管理
1 Spring 工厂类 2 XML 方式 1.1 Bean 实例化的三种方式 无参构造方法 静态工厂方法 实例工厂方法 3 XML方式属性注入 4 注解方式 5 注解方式属性注入
- 【DSP开发】【VS开发】PCIE设备扫描过程
初步了解完PCI总线标准之后,我们接下来正式开始PCIe设备的漫游之旅.从我们按下PC的电源按钮开始,BIOS就接管系统控制权开始工作,它会先进行一些内存和设备的初始化工作(当然,也包括我们的PCI设 ...
- 【Linux开发】linux设备驱动归纳总结(七):1.时间管理与内核延时
linux设备驱动归纳总结(七):1.时间管理与内核延时 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx ...
- 1137. N-th Tribonacci Number(Memory Usage: 13.9 MB, less than 100.00% of Python3)
其实思路很简单,套用一下普通斐波那契数列的非递归做法即可,不过这个成绩我一定要纪念一下,哈哈哈哈哈 代码在这儿: class Solution: def tribonacci(self, n: int ...
- 菜鸟系列Fabric——Fabric 1.2 多机部署(3)
多机部署fabric kafka共识 1. 角色分配 主机1 主机 2 Org1 peer0 1 Org2 peer 0 1 Orderer 0 1 Orderer 2 kafka 0 1 kafka ...
- SpringBoot上传文件
1.pom文件 <project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w ...
- 啃掉Hadoop系列笔记(01)-Hadoop框架的大数据生态
一.Hadoop是什么 1)Hadoop是一个由Apache基金会所开发的分布式系统基础架构 2)主要解决,海量数据的存储和海量数据的分析计算问题. 3)广义上来说,HADOOP通常是指一个更广泛的概 ...
- Configure脚本支持说明
在Linux上安装Nginx需要执行Configure脚本,该脚本需要做一些参数说明: 选项 说明 --prefix=<path> 指定Nginx软件的安装路径,若不指定默认安装在/usr ...