吴裕雄--天生自然深度学习TensorBoard可视化:监控指标可视化
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data # 1. 生成变量监控信息并定义生成监控信息日志的操作。
SUMMARY_DIR = "F:\\temp\\log"
BATCH_SIZE = 100
TRAIN_STEPS = 3000 def variable_summaries(var, name):
with tf.name_scope('summaries'):
tf.summary.histogram(name, var)
mean = tf.reduce_mean(var)
tf.summary.scalar('mean/' + name, mean)
stddev = tf.sqrt(tf.reduce_mean(tf.square(var - mean)))
tf.summary.scalar('stddev/' + name, stddev)
# 2. 生成一层全链接的神经网络。
def nn_layer(input_tensor, input_dim, output_dim, layer_name, act=tf.nn.relu):
with tf.name_scope(layer_name):
with tf.name_scope('weights'):
weights = tf.Variable(tf.truncated_normal([input_dim, output_dim], stddev=0.1))
variable_summaries(weights, layer_name + '/weights')
with tf.name_scope('biases'):
biases = tf.Variable(tf.constant(0.0, shape=[output_dim]))
variable_summaries(biases, layer_name + '/biases')
with tf.name_scope('Wx_plus_b'):
preactivate = tf.matmul(input_tensor, weights) + biases
tf.summary.histogram(layer_name + '/pre_activations', preactivate)
activations = act(preactivate, name='activation') # 记录神经网络节点输出在经过激活函数之后的分布。
tf.summary.histogram(layer_name + '/activations', activations)
return activations
def main():
mnist = input_data.read_data_sets("F:\\TensorFlowGoogle\\201806-github\\datasets\\MNIST_data", one_hot=True) with tf.name_scope('input'):
x = tf.placeholder(tf.float32, [None, 784], name='x-input')
y_ = tf.placeholder(tf.float32, [None, 10], name='y-input') with tf.name_scope('input_reshape'):
image_shaped_input = tf.reshape(x, [-1, 28, 28, 1])
tf.summary.image('input', image_shaped_input, 10) hidden1 = nn_layer(x, 784, 500, 'layer1')
y = nn_layer(hidden1, 500, 10, 'layer2', act=tf.identity) with tf.name_scope('cross_entropy'):
cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=y, labels=y_))
tf.summary.scalar('cross_entropy', cross_entropy) with tf.name_scope('train'):
train_step = tf.train.AdamOptimizer(0.001).minimize(cross_entropy) with tf.name_scope('accuracy'):
with tf.name_scope('correct_prediction'):
correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1))
with tf.name_scope('accuracy'):
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
tf.summary.scalar('accuracy', accuracy) merged = tf.summary.merge_all() with tf.Session() as sess: summary_writer = tf.summary.FileWriter(SUMMARY_DIR, sess.graph)
tf.global_variables_initializer().run() for i in range(TRAIN_STEPS):
xs, ys = mnist.train.next_batch(BATCH_SIZE)
# 运行训练步骤以及所有的日志生成操作,得到这次运行的日志。
summary, _ = sess.run([merged, train_step], feed_dict={x: xs, y_: ys})
# 将得到的所有日志写入日志文件,这样TensorBoard程序就可以拿到这次运行所对应的
# 运行信息。
summary_writer.add_summary(summary, i) summary_writer.close()
if __name__ == '__main__':
main()
吴裕雄--天生自然深度学习TensorBoard可视化:监控指标可视化的更多相关文章
- 吴裕雄--天生自然深度学习TensorBoard可视化:命名空间
# 1. 不同的命名空间. import tensorflow as tf with tf.variable_scope("foo"): a = tf.get_variable(& ...
- 吴裕雄--天生自然深度学习TensorBoard可视化:projector_MNIST
import os import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data from te ...
- 吴裕雄--天生自然深度学习TensorBoard可视化:改造后的mnist_train
import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data INPUT_NODE = 784 ...
- 吴裕雄--天生自然深度学习TensorBoard可视化:projector_data_prepare
import os import numpy as np import tensorflow as tf import matplotlib.pyplot as plt from tensorflow ...
- 吴裕雄--天生自然HADOOP学习笔记:hadoop集群实现PageRank算法实验报告
实验课程名称:大数据处理技术 实验项目名称:hadoop集群实现PageRank算法 实验类型:综合性 实验日期:2018年 6 月4日-6月14日 学生姓名 吴裕雄 学号 15210120331 班 ...
- 吴裕雄--天生自然HADOOP学习笔记:基本环境配置
实验目的 学习安装Java 学习配置环境变量 学习设置免密码登陆的方法 掌握Linux环境下时间同步的配置 实验原理 1.Java的安装 java是大数据的黄金语言,这和java跨平台的特性是密不可分 ...
- 吴裕雄--天生自然HADOOP学习笔记:使用yum安装更新软件
实验目的 了解yum的原理及配置 学习软件的更新与安装 学习源代码编译安装 实验原理 1.编译安装 前面我们讲到了安装软件的方式,因为linux是开放源码的,我们可以直接获得源码,自己编译安装.例如: ...
- 吴裕雄--天生自然HADOOP学习笔记:Shell工具使用
实验目的 学习使用xshell工具连接Linux服务器 在连上的服务器中进入用户目录 熟悉简单的文件操作命令 实验原理 熟悉shell命令是熟悉使用linux环境进行开发的第一步,我们在linux的交 ...
- 吴裕雄--天生自然MySQL学习笔记:MySQL UPDATE 更新
如果需要修改或更新 MySQL 中的数据,我们可以使用 SQL UPDATE 命令来操作. 语法 以下是 UPDATE 命令修改 MySQL 数据表数据的通用 SQL 语法: UPDATE table ...
随机推荐
- 九十七、SAP中ALV事件之十,通过REUSE_ALV_COMMENTARY_WRITE函数来显示ALV的标题
一.SE37查看REUSE_ALV_COMMENTARY_WRITE函数 二.查看一下导入 三.我们点击SLIS_T_LISTHEADER,来看一下类型 四.我们再看一下,这个info是60长度的字符 ...
- PHP数组创建和遍历(基础)
数组定义PHP数组可以是混合数组 你的数组里面可以有数字也可以有字符串,二维数组不谈一个数组里还有数组跟C有差别定义方式例如 $dd=array(array(1,2,3),array(1,2,3,4) ...
- python爬取网页文本、图片
从网页爬取文本信息: eg:从http://computer.swu.edu.cn/s/computer/kxyj2xsky/中爬取讲座信息(讲座时间和讲座名称) 注:如果要爬取的内容是多页的话,网址 ...
- vue学习(二)Vue常用指令
2 Vue常用指令 1. vue的使用要从创建Vue对象开始 var vm = new Vue(); 2. 创建vue对象的时候,需要传递参数,是json对象,json对象对象必须至少有两个属性成员 ...
- springboot - 映射 /error 到自定义且实现了ErrorController的Controller
1.总览 2.代码 1).pom.xml <dependencies> <dependency> <groupId>org.springframework.boot ...
- QThread创建多线程程序
最近在阅读Qt 5.9 C++开发指南,为了加深对书本上内容的理解,参照书上的讲解尝试写了一些demo,用于以后工作中查阅,如果涉及侵权请告知,实例程序samp13_1 mythread.h #ifn ...
- DNS bind9安装
参考 111 首先要成功安装Centos操作系统,最新版本是Centos 6.4版本,最小化安装. [root@localhost named]# ifconfig -a 0 1 eth1 ...
- 下页小希学MVC5+EF6.2 学习记录一
目的:1 学习mvc+ef 2 写下日记也是对自己的督促 第0课 从0开始 ASP.NET MVC开发模式和传统的WebForm开发模式相比,增加了很多"约定". 直接讲这些 & ...
- Python的递归深度问题
Python的递归深度问题 1.Python默认的递归深度是有限制的,当递归深度超过默认值的时候,就会引发RuntimeError.理论在997. 2.解决方法:最大递归层次的重新调整,解决方式是手工 ...
- Windows系统JDK环境变量配置
一.环境准备 Windows10 jdk1.8.0_144 二.下载并安装JDK 下载 密码: r5ym 三.环境变量配置 首先,打开控制面板>系统和安全>系统,点击高级系统设置进入系统属 ...