C. Journey

补今天早训

这个是一个dp,开始我以为是一个图论,然后就写了一个dij和网络流,然后mle了,不过我觉得如果空间开的足够的,应该也是可以过的。

然后看了题解说是一个dp,这个dp要bfs去转移,为了保证每条边只被转移一次,还要用拓扑排序,

说了这么多,感觉很复杂,其实不是,这个题目还是挺简单的。

如果你知道这个是一个dp+拓扑排序,然后就很简单了。

dp[i][j] 表示从 1走到 i 这个城市,其中一共走了 j 个城市的最短时间。用拓扑排序是保证每一个城市只会去转移一次,这样才不会超时。

#include <cstring>
#include <queue>
#include <cstdlib>
#include <cstdio>
#include <iostream>
#include <string>
#include <algorithm>
#include <map>
#include <vector>
#define inf 0x3f3f3f3f
#define inx64 0x3f3f3f3f3f3f3f3f
using namespace std;
typedef long long ll;
const int maxn = 5e3 + ;
struct node {
int u, v, w;
node(int u = , int v = , int w = ) :u(u), v(v), w(w) {}
};
vector<node>e;
vector<int>G[maxn];
int dp[maxn][maxn], in[maxn];
void add(int u, int v, int w) {
e.push_back(node(u, v, w));
G[u].push_back(e.size() - );
in[v]++;
}
int p[][];
int n, m, t;
void bfs(int s) {
queue<int>que;
for (int i = ; i <= n; i++) {
if (in[i] == ) que.push(i);
}
while (!que.empty()) {
int u = que.front(); que.pop();
for (int i = ; i < G[u].size(); i++) {
node now = e[G[u][i]];
int v = now.v;
for (int j = ; j <= n; j++) {
if (dp[v][j] > dp[u][j - ] + now.w) {
dp[v][j] = dp[u][j - ] + now.w;
p[v][j] = u;
}
}
in[v]--;
if (in[v] == ) que.push(v);
}
}
} int b[maxn]; int main() {
scanf("%d%d%d", &n, &m, &t);
while (m--) {
int u, v, w;
scanf("%d%d%d", &u, &v, &w);
add(u, v, w);
}
memset(dp, inf, sizeof(dp));
dp[][] = ;
bfs();
int ans = ;
for (int i = ; i <= n; i++) if (dp[n][i] <= t) ans = i;
printf("%d\n", ans);
int u = n;
for (int i = ans; i >= ; i--) {
b[i] = u;
u = p[u][i];
}
for (int i = ; i <= ans; i++) printf("%d ", b[i]);
printf("\n");
return ;
}

dp+拓扑排序

C. Journey bfs 拓扑排序+dp的更多相关文章

  1. POJ 3249 拓扑排序+DP

    貌似是道水题.TLE了几次.把所有的输入输出改成scanf 和 printf ,有吧队列改成了数组模拟.然后就AC 了.2333333.... Description: MR.DOG 在找工作的过程中 ...

  2. BZOJ_3887_[Usaco2015 Jan]Grass Cownoisseur_强连通分量+拓扑排序+DP

    BZOJ_3887_[Usaco2015 Jan]Grass Cownoisseur_强连通分量+拓扑排序+DP Description In an effort to better manage t ...

  3. [NOIP2017]逛公园 最短路+拓扑排序+dp

    题目描述 给出一张 $n$ 个点 $m$ 条边的有向图,边权为非负整数.求满足路径长度小于等于 $1$ 到 $n$ 最短路 $+k$ 的 $1$ 到 $n$ 的路径条数模 $p$ ,如果有无数条则输出 ...

  4. 洛谷P3244 落忆枫音 [HNOI2015] 拓扑排序+dp

    正解:拓扑排序+dp 解题报告: 传送门 我好暴躁昂,,,怎么感觉HNOI每年总有那么几道题题面巨长啊,,,语文不好真是太心痛辣QAQ 所以还是要简述一下题意,,,就是说,本来是有一个DAG,然后后来 ...

  5. 【BZOJ-1194】潘多拉的盒子 拓扑排序 + DP

    1194: [HNOI2006]潘多拉的盒子 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 456  Solved: 215[Submit][Stat ...

  6. 【BZOJ5109】[CodePlus 2017]大吉大利,晚上吃鸡! 最短路+拓扑排序+DP

    [BZOJ5109][CodePlus 2017]大吉大利,晚上吃鸡! Description 最近<绝地求生:大逃杀>风靡全球,皮皮和毛毛也迷上了这款游戏,他们经常组队玩这款游戏.在游戏 ...

  7. bzoj1093[ZJOI2007]最大半连通子图(tarjan+拓扑排序+dp)

    Description 一个有向图G=(V,E)称为半连通的(Semi-Connected),如果满足:?u,v∈V,满足u→v或v→u,即对于图中任意两点u,v,存在一条u到v的有向路径或者从v到u ...

  8. 【bzoj4011】[HNOI2015]落忆枫音 容斥原理+拓扑排序+dp

    题目描述 给你一张 $n$ 个点 $m$ 条边的DAG,$1$ 号节点没有入边.再向这个DAG中加入边 $x\to y$ ,求形成的新图中以 $1$ 为根的外向树形图数目模 $10^9+7$ . 输入 ...

  9. 【bzoj1093】[ZJOI2007]最大半连通子图 Tarjan+拓扑排序+dp

    题目描述 一个有向图G=(V,E)称为半连通的(Semi-Connected),如果满足:对于u,v∈V,满足u→v或v→u,即对于图中任意两点u,v,存在一条u到v的有向路径或者从v到u的有向路径. ...

随机推荐

  1. Java面向对象的总结

    面向对象的程序设计 1.面向对象 核心:以类的方式组织代码,以对象的方式封装数据 比喻:也就是说类是没有数据的,给了数据之后的类就是对象 封装 继承 多态 2.方法 a.一个方法只有一个返回值,只有一 ...

  2. Java程序员必备:序列化全方位解析

    前言 相信大家日常开发中,经常看到Java对象"implements Serializable".那么,它到底有什么用呢?本文从以下几个角度来解析序列这一块知识点~ 什么是Java ...

  3. bfs和dfs辨析—基础复习(从stack和queue的角度来理解区别,加深理解,不再模糊)

    参考: https://www.cnblogs.com/Tovi/articles/6194815.html https://blog.csdn.net/dangzhangjing97/article ...

  4. 01-css3之过渡

    一.介绍 过渡(transition)是CSS3中具有颠覆性的特征之一,我们可以在不使用 Flash 动画或 JavaScript 的情况下,当元素从一种样式变换为另一种样式时为元素添加效果,经常和 ...

  5. D. Feeding Chicken(构造)

    题目大意:将k个鸡放到一个n*m的矩阵中,要求每个鸡所占的rice的个数只差最小 题解:构造,设一共有cnt个rice,可以分cnt/k个,即每一只鸡要么占用cnt/k个rice,要么占cnt/k+1 ...

  6. F - Distinct Numbers

    链接:https://atcoder.jp/contests/abc143/tasks/abc143_f 题解:开两个数组,其中一个arr用来保存每个元素出现的次数,同时再开一个数组crr用来保存出现 ...

  7. [PHP]PHP设计模式:单例模式

    单例模式(职责模式): 简单的说,一个对象(在学习设计模式之前,需要比较了解面向对象思想)只负责一个特定的任务: 单例类: 1.构造函数需要标记为private(访问控制:防止外部代码使用new操作符 ...

  8. python web的进化历程

    对于所有的Web应用,本质上其实就是一个socket服务端,用户的浏览器其实就是一个socket客户端. 阶段1 socket服务端和客户端都自己编写 实现访问8080端口,返回一个'hello wo ...

  9. 架构师修炼之微服务部署 - 深入理解Docker镜像

    镜像简介 它是一个创建Docker 容器的只读模板,通过DockerFile可以自定义镜像. 它也是一个特殊的文件系统,除了提供容器运行时所需的程序.库.资源.配置等文件外,还包含了一些为运行时准备的 ...

  10. python信息收集(四)

        在前三篇中,我们介绍了使用python脚本发现二层.三层的主机设备,接下来我们介绍使用python发现第四层主机.     在TCP/IP协议中,第四层为传输层,主要使用的通信协议为TCP协议 ...