import numpy as np
import matplotlib.pyplot as plt from sklearn import datasets, linear_model
from sklearn.model_selection import train_test_split def load_data():
diabetes = datasets.load_diabetes()
return train_test_split(diabetes.data,diabetes.target,test_size=0.25,random_state=0) #Lasso回归
def test_Lasso(*data):
X_train,X_test,y_train,y_test=data
regr = linear_model.Lasso()
regr.fit(X_train, y_train)
print('Coefficients:%s, intercept %.2f'%(regr.coef_,regr.intercept_))
print("Residual sum of squares: %.2f"% np.mean((regr.predict(X_test) - y_test) ** 2))
print('Score: %.2f' % regr.score(X_test, y_test)) # 产生用于回归问题的数据集
X_train,X_test,y_train,y_test=load_data()
# 调用 test_Lasso
test_Lasso(X_train,X_test,y_train,y_test) def test_Lasso_alpha(*data):
X_train,X_test,y_train,y_test=data
alphas=[0.01,0.02,0.05,0.1,0.2,0.5,1,2,5,10,20,50,100,200,500,1000]
scores=[]
for i,alpha in enumerate(alphas):
regr = linear_model.Lasso(alpha=alpha)
regr.fit(X_train, y_train)
scores.append(regr.score(X_test, y_test))
## 绘图
fig=plt.figure()
ax=fig.add_subplot(1,1,1)
ax.plot(alphas,scores)
ax.set_xlabel(r"$\alpha$")
ax.set_ylabel(r"score")
ax.set_xscale('log')
ax.set_title("Lasso")
plt.show() # 调用 test_Lasso_alpha
test_Lasso_alpha(X_train,X_test,y_train,y_test)

吴裕雄--天生自然 人工智能机器学习实战代码:LASSO回归的更多相关文章

  1. 吴裕雄--天生自然 人工智能机器学习实战代码:线性判断分析LINEARDISCRIMINANTANALYSIS

    import numpy as np import matplotlib.pyplot as plt from matplotlib import cm from mpl_toolkits.mplot ...

  2. 吴裕雄--天生自然 人工智能机器学习实战代码:ELASTICNET回归

    import numpy as np import matplotlib.pyplot as plt from matplotlib import cm from mpl_toolkits.mplot ...

  3. 吴裕雄--天生自然python机器学习实战:K-NN算法约会网站好友喜好预测以及手写数字预测分类实验

    实验设备与软件环境 硬件环境:内存ddr3 4G及以上的x86架构主机一部 系统环境:windows 软件环境:Anaconda2(64位),python3.5,jupyter 内核版本:window ...

  4. 吴裕雄--天生自然python机器学习:使用Logistic回归从疝气病症预测病马的死亡率

    ,除了部分指标主观和难以测量外,该数据还存在一个问题,数据集中有 30%的值是缺失的.下面将首先介绍如何处理数据集中的数据缺失问题,然 后 再 利 用 Logistic回 归 和随机梯度上升算法来预测 ...

  5. 吴裕雄--天生自然python机器学习:决策树算法

    我们经常使用决策树处理分类问题’近来的调查表明决策树也是最经常使用的数据挖掘算法. 它之所以如此流行,一个很重要的原因就是使用者基本上不用了解机器学习算法,也不用深究它 是如何工作的. K-近邻算法可 ...

  6. 吴裕雄--天生自然python机器学习:使用K-近邻算法改进约会网站的配对效果

    在约会网站使用K-近邻算法 准备数据:从文本文件中解析数据 海伦收集约会数据巳经有了一段时间,她把这些数据存放在文本文件(1如1^及抓 比加 中,每 个样本数据占据一行,总共有1000行.海伦的样本主 ...

  7. 吴裕雄--天生自然python机器学习:支持向量机SVM

    基于最大间隔分隔数据 import matplotlib import matplotlib.pyplot as plt from numpy import * xcord0 = [] ycord0 ...

  8. 吴裕雄--天生自然python机器学习:朴素贝叶斯算法

    分类器有时会产生错误结果,这时可以要求分类器给出一个最优的类别猜测结果,同 时给出这个猜测的概率估计值. 概率论是许多机器学习算法的基础 在计算 特征值取某个值的概率时涉及了一些概率知识,在那里我们先 ...

  9. 吴裕雄--天生自然python机器学习:机器学习简介

    除却一些无关紧要的情况,人们很难直接从原始数据本身获得所需信息.例如 ,对于垃圾邮 件的检测,侦测一个单词是否存在并没有太大的作用,然而当某几个特定单词同时出现时,再辅 以考察邮件长度及其他因素,人们 ...

随机推荐

  1. EL表达式和JSTL(三)——EL表达式

    在JSP的开发中,为了获取Servlet中存储的数据,通常需要很多的Java代码,这样的做法使的JSP页面非常混乱,为此,JSP2.0中提供了一种EL规范,是一种简单的数据访问语言. 1.初识EL E ...

  2. 小白学习之pytorch框架(2)-动手学深度学习(begin-random.shuffle()、torch.index_select()、nn.Module、nn.Sequential())

    在这向大家推荐一本书-花书-动手学深度学习pytorch版,原书用的深度学习框架是MXNet,这个框架经过Gluon重新再封装,使用风格非常接近pytorch,但是由于pytorch越来越火,个人又比 ...

  3. 关于RL78 系列的bootloader

    1.充分了解芯片FLASH结构分布,对FLASH进行分区 2.熟练使用FSL库 3.调试中断映射功能 4.调试一种通信方式,UART,CAN等 5.对FLASH进行编程,执行跳转APP程序,调试一个多 ...

  4. 安装chrome并设置默认主页

    chrome 版本 https://support.google.com/chrome/a/answer/187948?hl=en&ref_topic=2936229

  5. 嵌入式c语言编码规范

    学习嵌入式的同学应该首先掌握嵌入式编码规范,这样才能更好的嵌入式系统. 下面就从这几个方面讲解一下嵌入式c编码规范. 注释风格.排版风格.头文件风格.变量定义.宏定义.函数 1 注释风格 1.1  注 ...

  6. C#匿名委托,匿名函数,lambda表达式

    一.类型.变量.实例之间的关系. 类型>变量>实例 类型可以创建变量,实体类可以创建实例,实例可以存储在变量里. 二.委托使用过程: 1.定义委托(写好签名): 2.创建委托变量: 3.给 ...

  7. [HDU多校]Ridiculous Netizens

    [HDU多校]Ridiculous Netizens 点分治 分成两个部分:对某一点P,连通块经过P或不经过P. 经过P采用树形依赖背包 不经过P的部分递归计算 树型依赖背包 v点必须由其父亲u点转移 ...

  8. 史上最强maven配置详情

    史上最强maven配置详情 优点 对第三方依赖库进行了统一的版本管理 统一了构建过程 统一了项目的目录结构 构建 清理 : mvn clear 编译 : mvn compile 测试 : mvn te ...

  9. 在线好用的json转xml超级好用在线json与xml互相转换

    在线好用的json转xml超级好用在线json与xml互相转换 拿走不谢:http://www.yzcopen.com/json/jsonxmlformat

  10. PyTorch基础——预测共享单车的使用量

    预处理实验数据 读取数据 下载数据 网盘链接:https://pan.baidu.com/s/1n_FtZjAswWR9rfuI6GtDhA 提取码:y4fb #导入需要使用的库 import num ...