http://acm.hdu.edu.cn/showproblem.php?pid=3698

Let the light guide us

Time Limit: 5000/2000 MS (Java/Others)    Memory Limit: 62768/32768 K (Java/Others)
Total Submission(s): 759    Accepted Submission(s): 253

Problem Description

Plain of despair was once an ancient battlefield where those brave spirits had rested in peace for thousands of years. Actually no one dare step into this sacred land until the rumor that “there is a huge gold mine underneath the plain” started to spread.
Recently an accident destroyed the eternal tranquility. Some greedy fools tried using powerful bombs to find the hidden treasure. Of course they failed and such behavior enraged those spirits--the consequence is that all the human villages nearby are haunted by ghosts.
In order to stop those ghosts as soon as possible, Panda the Archmage and Facer the great architect figure out a nice plan. Since the plain can be represented as grids of N rows and M columns, the plan is that we choose ONLY ONE cell in EACH ROW to build a magic tower so that each tower can use holy light to protect the entire ROW, and finally the whole plain can be covered and all spirits can rest in peace again. It will cost different time to build up a magic tower in different cells. The target is to minimize the total time of building all N towers, one in each row.
“Ah, we might have some difficulties.” said Panda, “In order to control the towers correctly, we must guarantee that every two towers in two consecutive rows share a common magic area.”
“What?”
“Specifically, if we build a tower in cell (i,j) and another tower in cell (i+1,k), then we shall have |j-k|≤f(i,j)+f(i+1,k). Here, f(i,j) means the scale of magic flow in cell (i,j).”
“How?”
“Ur, I forgot that you cannot sense the magic power. Here is a map which shows the scale of magic flows in each cell. And remember that the constraint holds for every two consecutive rows.”
“Understood.”
“Excellent! Let’s get started!”
Would you mind helping them?

Input

There are multiple test cases.
Each test case starts with a line containing 2 integers N and M (2<=N<=100,1<=M<=5000), representing that the plain consists N rows and M columns.
The following N lines contain M integers each, forming a matrix T of N×M. The j-th element in row i (Tij) represents the time cost of building a magic tower in cell (i, j). (0<=Tij<=100000)
The following N lines contain M integers each, forming a matrix F of N×M. The j-th element in row i (Fij) represents the scale of magic flows in cell (i, j). (0<=Fij<=100000)
For each test case, there is always a solution satisfying the constraints.
The input ends with a test case of N=0 and M=0.

Output

For each test case, output a line with a single integer, which is the minimum time cost to finish all magic towers.

Sample Input

3 5

9 5 3 8 7

8 2 6 8 9

1 9 7 8 6

0 1 0 1 2

1 0 2 1 1

0 2 1 0 2

0 0

Sample Output

10

Source

2010 Asia Fuzhou Regional Contest

分析:

这题显然是Dp .....dp[i][j] = min{dp[i + 1][k] + T[i][j]} |j-k|≤f(i,j)+f(i+1,k)

可是,一看数据规模,time有点捉急额、、、

斜率优化? .....没看出来。

四边形不等式? .....还是算了吧。

看来要优化状态转移方程“有点”困难......

让我们换个思路,能不能快速取到合适的k…

|j-k|≤f(i,j)+f(i+1,k)

Dp[i][j]的最优值,一定在以j为圆心,f[i][j]为半径的区间内

而dp[i-1][j]能更新以j为圆心,f[i-1][j] 为半径的区间。

这样,我们用每个dp[i-1][j] 更新每个[j – f[i - 1][j] , j + f[i - 1][j]]范围内的值。

计算 Dp[i][j]时,只需查询[j – f[i][j] , j + f[i][j]]范围内的最小值,既RMQ

So。。。。看代码吧。。。。

AC Code:    呵呵,在HDU上排名第13.......

#include <cstdio>

using namespace std;

const int maxn = 105;

const int maxm = 5005;

const int inf = 1 << 30;

inline int L(int rt)    {return rt << 1;}

inline int R(int rt)    {return rt << 1 | 1;}

inline int min(int a,int b) {return a < b ? a : b;}

struct Node

{

    int l,r;

    int min;        // 区间最小值

    int val;

} nd[maxm << 2];

int f[maxn][maxm];

int time[maxn][maxm];

int dp[maxn][maxm];

inline void pushDown(int rt)

{

    if(nd[rt].val != inf)                            // val 有修改

    {

        nd[L(rt)].val = min(nd[L(rt)].val,nd[rt].val);

        nd[R(rt)].val = min(nd[R(rt)].val,nd[rt].val);

        nd[L(rt)].min = min(nd[L(rt)].min,nd[L(rt)].val);

        nd[R(rt)].min = min(nd[R(rt)].min,nd[R(rt)].val);

        nd[rt].val = inf;

    }

}

void build(int l,int r,int rt)                            // 建线段树

{

    nd[rt].l = l;   nd[rt].r = r;

    nd[rt].min = nd[rt].val = inf;

    if(l == r)  return;

    int mid = (l + r) >> 1;

    build(l,mid,L(rt));

    build(mid + 1,r,R(rt));

}

void update(int l,int r,int val,int rt)                     // 更新区间[l,r]

{

    if(l <= nd[rt].l && nd[rt].r <= r)

    {

        nd[rt].val = min(val,nd[rt].val);

        nd[rt].min = min(nd[rt].val,nd[rt].min);

        return;

    }

    int mid = (nd[rt].l + nd[rt].r) >> 1;

    pushDown(rt);

    if(l <= mid)    update(l,r,val,L(rt));

    if(r > mid)     update(l,r,val,R(rt));

    nd[rt].min = min(nd[L(rt)].min,nd[R(rt)].min);

}

int query(int l,int r,int rt)                            // RMQ

{

    if(l <= nd[rt].l && nd[rt].r <= r)

        return nd[rt].min;

    int ret = inf;

    int mid = (nd[rt].l + nd[rt].r) >> 1;

    pushDown(rt);

    if(l <= mid)    ret = min(ret,query(l,r,L(rt)));

    if(r > mid)     ret = min(ret,query(l,r,R(rt)));

    return ret;

}

inline void scan(int &n)                     // 读入加速

{

    char c;

    while(c = getchar(),c < '0' || c > '9');

    n = c - '0';

    while(c = getchar(),(c >= '0' && c <= '9')) n = n * 10 + c - '0';

}

int main()

{

    int n,m;

    while(scanf("%d%d",&n,&m) && (n != 0 || m != 0))

    {

        for(int i = 1;i <= n;i ++)

        for(int j = 1;j <= m;j ++)

            scan(time[i][j]);

        for(int i = 1;i <= n;i ++)

        for(int j = 1;j <= m;j ++)

            scan(f[i][j]);

        for(int i = 1;i <= m;i ++)              // 初始化边界

            dp[1][i] = time[1][i];

/////////////////////////////////////////////////////核心/////////////////////////////////////////////////////

        for(int i = 2;i <= n;i ++)

        {

            build(1,m,1);

            for(int j = 1;j <= m;j ++)

                update(j - f[i - 1][j],j + f[i - 1][j],dp[i - 1][j],1);

            for(int j = 1;j <= m;j ++)

                dp[i][j] = query(j - f[i][j],j + f[i][j],1) + time[i][j];

        }

/////////////////////////////////////////////////////END/////////////////////////////////////////////////////

        int ans = inf;

        for(int i = 1;i <= m;i ++)

            ans = min(ans,dp[n][i]);

        printf("%d\n",ans);

    }

    return 0;

}

题解 HDU 3698 Let the light guide us Dp + 线段树优化的更多相关文章

  1. hdu3698 Let the light guide us dp+线段树优化

    http://acm.hdu.edu.cn/showproblem.php?pid=3698 Let the light guide us Time Limit: 5000/2000 MS (Java ...

  2. HDU 3698 Let the light guide us

    Let the light guide us Time Limit: 2000ms Memory Limit: 32768KB This problem will be judged on HDU. ...

  3. hdu 3698 Let the light guide us(线段树优化&简单DP)

    Let the light guide us Time Limit: 5000/2000 MS (Java/Others)    Memory Limit: 62768/32768 K (Java/O ...

  4. HDU 3698 Let the light guide us(DP+线段树)(2010 Asia Fuzhou Regional Contest)

    Description Plain of despair was once an ancient battlefield where those brave spirits had rested in ...

  5. HDU 4719 Oh My Holy FFF(DP+线段树)(2013 ACM/ICPC Asia Regional Online ―― Warmup2)

    Description N soldiers from the famous "*FFF* army" is standing in a line, from left to ri ...

  6. hdu 3698 UVA1490 Let the light guide us 线段树优化DP

    题目链接 and 题目大意 hdu3698 但是 hdu的数据比较弱,所以在这luogu提交吧UVA1490 Let the light guide us 有一个\(n*m\)的平原,要求每行选一个点 ...

  7. hdu 5266 pog loves szh III(lca + 线段树)

    I - pog loves szh III Time Limit:6000MS     Memory Limit:131072KB     64bit IO Format:%I64d & %I ...

  8. hdu 3016 dp+线段树

    Man Down Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total S ...

  9. HDU 2795 Billboard(宣传栏贴公告,线段树应用)

    HDU 2795 Billboard(宣传栏贴公告,线段树应用) ACM 题目地址:HDU 2795 Billboard 题意:  要在h*w宣传栏上贴公告,每条公告的高度都是为1的,并且每条公告都要 ...

随机推荐

  1. Android java项目中引用kotlin,混合开发工程配置

    https://www.jianshu.com/p/9220227cdfb3 buildscript { ext.kotlin_version = '1.2.71' repositories { go ...

  2. PAT甲级——1146 Topological Order (25分)

    This is a problem given in the Graduate Entrance Exam in 2018: Which of the following is NOT a topol ...

  3. java通过HSSFWorkbook导出xls文件

    使用swgger2.Restlet等接口工具有bug导致导出失败,测试直接使用浏览器 //导出列表-新 @UserRoleJudgment(authpos = SystemControllerLog. ...

  4. 【C#并发】00概述

    摘自<C#并发编程经典实例>[美]Stephen Cleary 并发:同时做多件事情.终端用户利用并发功能,在输入数据库的同时相应用户输入.服务器应用并发,在处理第一个请求的同时响应第二个 ...

  5. ccf201403-3 记录一个神tmwa了的代码 莫非我没看懂题。。。

    #include <string.h> #include<cstdio> #include<stdio.h> #include <iostream> # ...

  6. JS专题-FormData

    var formData = new FormData(); <form id="coords" class="coords" onsubmit=&quo ...

  7. 关于vue内只要html元素的代码

    使用v-model v-text v-html vue会解析出入的html代码报错 则上传sku的description时需要html页面的代码 所以在description 所在的表单元素内加入 v ...

  8. PyTorch基础——词向量(Word Vector)技术

    一.介绍 内容 将接触现代 NLP 技术的基础:词向量技术. 第一个是构建一个简单的 N-Gram 语言模型,它可以根据 N 个历史词汇预测下一个单词,从而得到每一个单词的向量表示. 第二个将接触到现 ...

  9. android中的适配器模式

    原文: https://blog.csdn.net/beyond0525/article/details/22814129 类适配模式.对象适配模式.接口适配模式

  10. 关于volatile关键字

    来源:衡阳网站优化 在java核心卷1中对volatile关键字是这么描述的: volatile关键字为实例域的同步访问提供了一种免锁机制.如果声明一个域为volatile,那么编译器和虚拟机就知道该 ...