概率图模型(PGM,Probabilistic Graphical Model)
PGM是现代信号处理(尤其是机器学习)的重要内容。
PGM通过图的方式,将多个随机变量之前的关系通过简洁的方式表现出来。因此PGM包括图论和概率论的相关内容。
PGM理论研究并解决三个问题:
1)表示(如何通过图来刻画多个随机变量之间的关系)(注:这个是PGM的基础)
2)学习(如何通过已知数据来确定图的参数) (注:机器学习主要研究这个问题)
3)推断(如果根据已知图,来推断出想要的统计结论) (注:消息传递主要研究这个问题)
表示(Representations)
首先,PGM里面主要使用三种类型的图,
a)贝叶斯网络(Bayesian Network),有向图
b)马尔科夫网络(Markov Network)或者叫马尔科夫随机场(MRF,Markov Random Field),无向图
c)因子图(Factor Graph)
三种图有不同的特点和应用场景。
先定义一些图论中的基本概念:
Graph:A graph $\mathcal{G}=(X,E)$ is a tuple consist of a set of vertices $X$ and a set of edges $E$.
Directed Graph:A graph $\mathcal{R}=(X,E)$ is directed if all edges are directed.
Parent and Child: for a directed graph, $ \mathbf{Pa}(X_j) = \{ X_i \mid (X_i \to X_j) \in \mathbf(E) \} $ $ \mathbf{Ch}(X_i) = \{ X_j \mid (X_i \to X_j) \in \mathbf(E) \} $
Neighbor: for a undirected graph, $ \mathbf{Nb}(X_j) = \{ X_i \mid (X_i - X_j) \in \mathbf(E) \} $
Ancestor and Desendant: $ \mathbf{Anc}(X_j) = \{ X_i \mid \text{ exists a directed path from } X_i \text{ to } X_j \} $
$ \mathbf{Desc}(X_i) = \{ X_j \mid \text{ exists a directed path from } X_i \text{ to } X_j \} $
$ \mathbf{NonDesc}(X_i) = \mathbf{X} - X_i - \mathbf{Desc}(X_i) - \mathbf{Pa}(X_i) $
Bayesian Network (BN)
(注:我们经常遇到的dynamic Bayesian network is a Bayesian network unrolled over time (at each time slice, the BN has the same structure).)
- Definition:
对于随机变量 X1,X2,...,XN,如果联合概率分布可以表示为
$P(X_1,...,X_N) = \prod\limits_{i=1}^N P_{X_i}(X_i \mid \mathbf{Pa} (X_i))$
A Bayesian Network consist of a DAG $\mathcal{G}=(X, E)$ and the conresponding conditional probability distribution $P_{X_i}(X_i \mid \mathbf{Pa} (X_i))$.
- Conditional Indepandence Properties
PGM为啥能简化表达大量随机变量之间的关系,就是因为这些随机变量之间存在一些独立特性,而PGM通过图的形式将这些独立特性表达了出来。
Theorem 1
$ X_i \perp \mathbf{NonDesc}(X_i) \mid \mathbf{Pa}(X_i) \; \forall i, $
Markov Network (MN)
- Definition:
对于随机变量 X1,X2,...,XN,如果联合概率分布可以表示为
$P(X_1,...,X_N) = \frac{1}{Z} \prod\limits_{l=1}^L \Psi_{\mathbf{C}_l}(\mathbf{C}_l)$
则,Markov network由对应的 undirected graph $\mathcal{G}=(X,E)$ 和 一系列最大团的势函数 $\Psi_i: \, \mathbf{val}(C_i) \to \mathbb{R}_{+} $ (nonnegative functions) 表示
条件独立性:
Local Markov property
Pairwise Markov property
Global Markov property
Factor Graph (FG)
概率图模型(PGM,Probabilistic Graphical Model)的更多相关文章
- 从概率图模型pgm到rbm
有向图模型:directed acyclic graph DAG 贝叶斯网络 对称的,无向图, UGM: undirected graphic model UGM, 更有名的名称是MRF,mar ...
- 概率图模型PGM——D map, I map, perfect map
若F分布的每个条件独立性质都反映在A图中,则A图被称为F分布的D map. 若A图表现出的所有条件独立性质都在F分布中满足(与F分布不矛盾),则A图被称为F分布的I map. 弱A图既是F分布的D m ...
- AI 概率图模型
概率图模型(Probabilistic Graphical Model) 有向图模型 信念网络 贝叶斯网络 无向模型 马尔科夫随机场 马尔科夫网络
- Stanford概率图模型: 第一讲 有向图-贝叶斯网络
原文链接(系列):http://blog.csdn.net/yangliuy/article/details/8067261 概率图模型(Probabilistic Graphical Model)系 ...
- PGM:概率图模型Graphical Model
http://blog.csdn.net/pipisorry/article/details/51461878 概率图模型Graphical Models简介 完全通过代数计算来对更加复杂的模型进行建 ...
- 概率图模型(PGM)综述-by MIT 林达华博士
声明:本文转载自http://www.sigvc.org/bbs/thread-728-1-1.html,个人感觉是很好的PGM理论综述,高屋建瓴的总结了PGM的主要分支和发展趋势,特收藏于此. “概 ...
- 概率图模型(PGM):贝叶斯网(Bayesian network)初探
1. 从贝叶斯方法(思想)说起 - 我对世界的看法随世界变化而随时变化 用一句话概括贝叶斯方法创始人Thomas Bayes的观点就是:任何时候,我对世界总有一个主观的先验判断,但是这个判断会随着世界 ...
- 概率图模型(PGM) —— 贝叶斯网络(Bayesian Network)
概率图模型是图论与概率方法的结合产物.Probabilistic graphical models are a joint probability distribution defined over ...
- 概率图模型(PGM)学习笔记(四)-贝叶斯网络-伯努利贝叶斯-多项式贝叶斯
之前忘记强调了一个重要差别:条件概率链式法则和贝叶斯网络链式法则的差别 条件概率链式法则 贝叶斯网络链式法则,如图1 图1 乍一看非常easy认为贝叶斯网络链式法则不就是大家曾经学的链式法则么,事实上 ...
随机推荐
- MySQL主从复制(一主两从)
主库开启bin-log二进制日志功能,并建立slave账号,并授权从库连接主库,从库通过change master得到主库的相关同步信息, 然后连接主库进行验证,主库产生的新数据会导入到bin- ...
- 6.Python字符串
#header { display: none !important; } } #header-spacer { width: 100%; visibility: hidden; } @media p ...
- 洛谷P1908 逆序对(线段树解法)
题目描述 猫猫TOM和小老鼠JERRY最近又较量上了,但是毕竟都是成年人,他们已经不喜欢再玩那种你追我赶的游戏,现在他们喜欢玩统计.最近,TOM老猫查阅到一个人类称之为“逆序对”的东西,这东西是这样定 ...
- java 抛出异常与finally的混用对于语句块的执行顺序的影响
代码如下: package test1; public class EmbededFinally { public static void main(String args[]) { int resu ...
- netty实现websocket客户端(附:测试服务端代码)
1,客户端启动类 package test3; import io.netty.bootstrap.Bootstrap; import io.netty.buffer.Unpooled; import ...
- 疫情对国内5G发展的影响
导读 2020年春节期间,“新型冠状病毒”引发了自SARS之后又一次全国性疫情,而世卫组织也将之列为国际关注的突发公共卫生事件,随后多国发布了针对中国的旅行警告和入境限制,从当前情况来看,疫情对中国各 ...
- 深度学习之父低调开源 CapsNet,欲取代 CNN
“卷积神经网络(CNN)的时代已经过去了!” ——Geoffrey Hinton 酝酿许久,深度学习之父Geoffrey Hinton在10月份发表了备受瞩目的Capsule Networks(Cap ...
- 【SSM sql.xml】日志查询mapper.xml
LogInfoMapper.xml <?xml version="1.0" encoding="UTF-8"?> <!DOCTYPE mapp ...
- POJ 2559 Largest Rectangle in a Histogram(单调栈) && 单调栈
嗯... 题目链接:http://poj.org/problem?id=2559 一.单调栈: 1.性质: 单调栈是一种特殊的栈,特殊之处在于栈内的元素都保持一个单调性,可能为单调递增,也可能为单调递 ...
- JS获取光标在input 或 texterea 中下标位置
<textarea placeholder="请输入表达式" id="methodInput" ></textarea> 获取位置: v ...