PGM是现代信号处理(尤其是机器学习)的重要内容。

PGM通过图的方式,将多个随机变量之前的关系通过简洁的方式表现出来。因此PGM包括图论和概率论的相关内容。

PGM理论研究并解决三个问题:

1)表示(如何通过图来刻画多个随机变量之间的关系)(注:这个是PGM的基础)

2)学习(如何通过已知数据来确定图的参数) (注:机器学习主要研究这个问题)

3)推断(如果根据已知图,来推断出想要的统计结论)  (注:消息传递主要研究这个问题)

表示(Representations)

首先,PGM里面主要使用三种类型的图,

a)贝叶斯网络(Bayesian Network),有向图

b)马尔科夫网络(Markov Network)或者叫马尔科夫随机场(MRF,Markov Random Field),无向图

c)因子图(Factor Graph)

三种图有不同的特点和应用场景。


先定义一些图论中的基本概念:

Graph:A graph $\mathcal{G}=(X,E)$ is a tuple consist of a set of vertices $X$ and a set of edges $E$.

Directed Graph:A graph $\mathcal{R}=(X,E)$ is directed if all edges are directed.

Parent and Child: for a directed graph, $ \mathbf{Pa}(X_j) = \{ X_i \mid (X_i \to X_j) \in \mathbf(E) \} $    $ \mathbf{Ch}(X_i) = \{ X_j \mid (X_i \to X_j) \in \mathbf(E) \} $

Neighbor: for a undirected graph,  $ \mathbf{Nb}(X_j) = \{ X_i \mid (X_i - X_j) \in \mathbf(E) \} $

Ancestor and Desendant:  $ \mathbf{Anc}(X_j) = \{ X_i \mid \text{ exists a directed path from } X_i \text{ to } X_j \} $

$ \mathbf{Desc}(X_i) = \{ X_j \mid \text{ exists a directed path from } X_i \text{ to } X_j \} $

$ \mathbf{NonDesc}(X_i) = \mathbf{X} - X_i - \mathbf{Desc}(X_i) - \mathbf{Pa}(X_i) $


  • Bayesian Network (BN)

(注:我们经常遇到的dynamic Bayesian network is a Bayesian network unrolled over time (at each time slice, the BN has the same structure).)

  • Definition:

对于随机变量 X1,X2,...,XN,如果联合概率分布可以表示为

$P(X_1,...,X_N) = \prod\limits_{i=1}^N P_{X_i}(X_i \mid \mathbf{Pa} (X_i))$

A Bayesian Network consist of a DAG $\mathcal{G}=(X, E)$ and the conresponding conditional probability distribution $P_{X_i}(X_i \mid \mathbf{Pa} (X_i))$.

  • Conditional Indepandence Properties

PGM为啥能简化表达大量随机变量之间的关系,就是因为这些随机变量之间存在一些独立特性,而PGM通过图的形式将这些独立特性表达了出来

Theorem 1

$ X_i \perp \mathbf{NonDesc}(X_i) \mid \mathbf{Pa}(X_i)  \; \forall i, $

  • Markov Network (MN)

  • Definition:

对于随机变量 X1,X2,...,XN,如果联合概率分布可以表示为

$P(X_1,...,X_N) = \frac{1}{Z} \prod\limits_{l=1}^L \Psi_{\mathbf{C}_l}(\mathbf{C}_l)$

则,Markov network由对应的 undirected graph $\mathcal{G}=(X,E)$ 和 一系列最大团的势函数 $\Psi_i: \, \mathbf{val}(C_i) \to \mathbb{R}_{+}  $ (nonnegative functions) 表示

条件独立性:

Local Markov property

Pairwise Markov property

Global Markov property

  • Factor Graph (FG)

概率图模型(PGM,Probabilistic Graphical Model)的更多相关文章

  1. 从概率图模型pgm到rbm

    有向图模型:directed acyclic graph  DAG  贝叶斯网络 对称的,无向图, UGM: undirected graphic model  UGM, 更有名的名称是MRF,mar ...

  2. 概率图模型PGM——D map, I map, perfect map

    若F分布的每个条件独立性质都反映在A图中,则A图被称为F分布的D map. 若A图表现出的所有条件独立性质都在F分布中满足(与F分布不矛盾),则A图被称为F分布的I map. 弱A图既是F分布的D m ...

  3. AI 概率图模型

    概率图模型(Probabilistic Graphical Model) 有向图模型 信念网络 贝叶斯网络 无向模型 马尔科夫随机场 马尔科夫网络

  4. Stanford概率图模型: 第一讲 有向图-贝叶斯网络

    原文链接(系列):http://blog.csdn.net/yangliuy/article/details/8067261 概率图模型(Probabilistic Graphical Model)系 ...

  5. PGM:概率图模型Graphical Model

    http://blog.csdn.net/pipisorry/article/details/51461878 概率图模型Graphical Models简介 完全通过代数计算来对更加复杂的模型进行建 ...

  6. 概率图模型(PGM)综述-by MIT 林达华博士

    声明:本文转载自http://www.sigvc.org/bbs/thread-728-1-1.html,个人感觉是很好的PGM理论综述,高屋建瓴的总结了PGM的主要分支和发展趋势,特收藏于此. “概 ...

  7. 概率图模型(PGM):贝叶斯网(Bayesian network)初探

    1. 从贝叶斯方法(思想)说起 - 我对世界的看法随世界变化而随时变化 用一句话概括贝叶斯方法创始人Thomas Bayes的观点就是:任何时候,我对世界总有一个主观的先验判断,但是这个判断会随着世界 ...

  8. 概率图模型(PGM) —— 贝叶斯网络(Bayesian Network)

    概率图模型是图论与概率方法的结合产物.Probabilistic graphical models are a joint probability distribution defined over ...

  9. 概率图模型(PGM)学习笔记(四)-贝叶斯网络-伯努利贝叶斯-多项式贝叶斯

    之前忘记强调了一个重要差别:条件概率链式法则和贝叶斯网络链式法则的差别 条件概率链式法则 贝叶斯网络链式法则,如图1 图1 乍一看非常easy认为贝叶斯网络链式法则不就是大家曾经学的链式法则么,事实上 ...

随机推荐

  1. LCT 维护边双 / 点双的模板

    用 \(\text{LCT}\) 维护边双的做法是:加入一条非树边时,将这段树上路径合并为一个点代表这个边双,具体实现用并查集合并点,在 \(\text{Splay}\) 与 \(\text{Acce ...

  2. Linux - 查看所有服务状态

    ubuntu: service --status-all 例如可查看ssh, apache2等服务是否开启

  3. 模块学习-shutil

    高级的 文件.文件夹.压缩包 处理模块 shutil.copyfileobj(fsrc, fdst[, length]) 将文件内容拷贝到另一个文件中,可以部分内容 shutil.copyfile(s ...

  4. 802.1X与Cisco基于身份的网络服务(IBNS)

    Cisco基于身份的网络服务(Identity-Based Networking Services,IBNS)是一种以IEEE802.1X标准为基础的安全架构,具有认证.用户策略.访问控制等多种功能, ...

  5. ResultSet指针回到初始位置的方法及ResultSet介绍

    原文地址: https://blog.csdn.net/walkerjong/article/details/7023872 仅供学习参考使用. 结果集(ResultSet)是数据中查询结果返回的一种 ...

  6. eclipse 热部署

    参考: http://blog.sina.com.cn/s/blog_be8b002e0101koql.html

  7. 标准类 (Java Bean)

    一个标准类通常包括四个部分: 1.所有成员变量都要用 private 关键字修饰 2.为每一个成员变量编写一对 Getter/Setter 方法 3.编写一个无参数的构造方法 4.编写一个全参数的构造 ...

  8. 【读书笔记】图解HTTP完整流程

    1.1 使用 HTTP 协议访问 Web: 根据 Web 浏览器地址栏中指定的URL,从服务端获取资源等信息,在页面上展示. Web 使用一种 HTTP (超文本传输协议)作为规范,完成从客户端到服务 ...

  9. Shell函数!

    1.作用:将命令序列按格式写在一起,可方便重复使用命令序列2.Shell 函数定义格式:[ function ] 函数名(){命令序列[ return x ]}3.调用函数的方法:函数名 [ 参数 1 ...

  10. 使用外网访问Flask项目

    在学习flask过程中,想使用手机访问项目,根据flask手册中可以将 app.run(host='192.168.1.109', port=8000,debug=True) 但是发现手机依然无法连接 ...