ConcurrentHashMap红黑树的实现
红黑树
红黑树是一种特殊的二叉树,主要用它存储有序的数据,提供高效的数据检索,时间复杂度为O(lgn),每个节点都有一个标识位表示颜色,红色或黑色,有如下5种特性:
1、每个节点要么红色,要么是黑色;
2、根节点一定是黑色的;
3、每个空叶子节点必须是黑色的;
4、如果一个节点是红色的,那么它的子节点必须是黑色的;
5、从一个节点到该节点的子孙节点的所有路径包含相同个数的黑色节点;
注:首先它是二叉树,所以还是要满足:左节点hash值<父节点<右节点
结构示意图
只要满足以上5个特性的二叉树都是红黑树,当有新的节点加入时,有可能会破坏其中一些特性,需要通过左旋或右旋操作调整树结构,重新着色,使之重新满足所有特性。
ConcurrentHashMap红黑树实现
在1.8的实现中,当一个链表中的元素达到8个时,会调用treeifyBin()
方法把链表结构转化成红黑树结构,实现如下:
/**
* Replaces all linked nodes in bin at given index unless table is
* too small, in which case resizes instead.
*/
private final void treeifyBin(Node<K,V>[] tab, int index) {
Node<K,V> b; int n, sc;
if (tab != null) {
if ((n = tab.length) < MIN_TREEIFY_CAPACITY)
tryPresize(n << 1);
else if ((b = tabAt(tab, index)) != null && b.hash >= 0) {
synchronized (b) {
if (tabAt(tab, index) == b) {
TreeNode<K,V> hd = null, tl = null;
for (Node<K,V> e = b; e != null; e = e.next) {
TreeNode<K,V> p =
new TreeNode<K,V>(e.hash, e.key, e.val,
null, null);
if ((p.prev = tl) == null)
hd = p;
else
tl.next = p;
tl = p;
}
setTabAt(tab, index, new TreeBin<K,V>(hd));
}
}
}
}
}
从上述实现可以看出:并非一开始就创建红黑树结构,如果当前Node
数组长度小于阈值MIN_TREEIFY_CAPACITY
,默认为64,先通过扩大数组容量为原来的两倍以缓解单个链表元素过大的性能问题。
红黑树构造过程
下面对红黑树的构造过程进行分析:
1、通过遍历Node
链表,生成对应的TreeNode
链表,其中TreeNode
在实现上继承了Node
类;
class TreeNode<K,V> extends Node<K,V> {
TreeNode<K,V> parent; // red-black tree links
TreeNode<K,V> left;
TreeNode<K,V> right;
TreeNode<K,V> prev;
// needed to unlink next upon deletion
boolean red;
}
假设TreeNode
链表如下,其中节点中的数值代表hash
值:
2、根据TreeNode
链表初始化TreeBin
类对象,TreeBin
在实现上同样继承了Node
类,所以初始化完成的TreeBin
类对象可以保持在Node
数组中;
class TreeBin<K,V> extends Node<K,V> {
TreeNode<K,V> root;
volatile TreeNode<K,V> first;
volatile Thread waiter; //volatile修饰,内存可见,
volatile int lockState;
// values for lockState
// 持有写锁时,设置为1
static final int WRITER = 1;
// 等待写锁时的设置为2
static final int WAITER = 2;
// increment value for setting read lock
static final int READER = 4;
}
3、初始化根节点:
遍历TreeNode
链表生成红黑树,一开始二叉树的根节点root
为空,则设置链表中的第一个节点80为root
,并设置其red
属性为false
,因为在红黑树的特性1中,明确规定根节点必须是黑色的;
for (TreeNode<K,V> x = b, next; x != null; x = next) {
next = (TreeNode<K,V>)x.next;
x.left = x.right = null;
if (r == null) {
x.parent = null;
x.red = false;
r = x;
}
...
二叉树结构:
4、加入节点60,如果root
不为空,则通过比较节点hash
值的大小将新节点插入到指定位置,实现如下:
K k = x.key;
int h = x.hash;
Class<?> kc = null;//泛型,泛型擦除在编译期间
for (TreeNode<K,V> p = r;;) {
int dir, ph;
K pk = p.key;
if ((ph = p.hash) > h)
dir = -1;
else if (ph < h)
dir = 1;
else if ((kc == null &&
(kc = comparableClassFor(k)) == null) ||
(dir = compareComparables(kc, k, pk)) == 0)
dir = tieBreakOrder(k, pk);
TreeNode<K,V> xp = p;
if ((p = (dir <= 0) ? p.left : p.right) == null) {
x.parent = xp;
if (dir <= 0)
xp.left = x;
else
xp.right = x;
r = balanceInsertion(r, x);
break;
}
}
其中x
代表即将插入到红黑树的节点,p
指向红黑树中当前遍历到的节点,从根节点开始递归遍历,x
的插入过程(根据hash值的大小,找到插入位置并插入)如下:
1)、如果x
的hash
值小于p
的hash
值,则判断p
的左节点是否为空,如果不为空,则把p
指向其左节点,并继续和p
进行比较,如果p
的左节点为空,则把x
指向的节点插入到该位置;
2)、如果x
的hash
值大于p
的hash
值,则判断p
的右节点是否为空,如果不为空,则把p
指向其右节点,并继续和p
进行比较,如果p
的右节点为空,则把x
指向的节点插入到该位置;
3)、如果x
的hash
值和p
的hash
值相等,怎么办?
解决:首先判断节点中的key
对象的类是否实现了Comparable
接口,如果实现Comparable
接口,则调用compareTo
方法比较两者key
的大小,但是如果key
对象没有实现Comparable
接口,或则compareTo
方法返回了0,则继续调用tieBreakOrder
方法计算dir
值,tieBreakOrder
方法实现如下:
static int tieBreakOrder(Object a, Object b) {
int d;
if (a == null || b == null ||
(d = a.getClass().getName().
compareTo(b.getClass().getName())) == 0)
d = (System.identityHashCode(a) <= System.identityHashCode(b) ?
-1 : 1);
return d;
}
最终比较key
对象的默认hashCode()
方法的返回值,因为System.identityHashCode(a)
调用的是对象a
默认的hashCode()
;
插入节点60之后的二叉树:
5、当有新节点加入时,可能会破坏红黑树的特性,需要执行balanceInsertion()
方法调整二叉树,使之重新满足特性,方法中的变量xp
指向x
的父节点,xpp
指向xp
父节点,xppl
和xppr
分别指向xpp
的左右子节点,balanceInsertion()
方法首先会把新加入的节点设置成红色。
①、加入节点60之后,此时xp
指向节点80,其父节点为空,直接返回。
if ((xp = x.parent) == null) {
x.red = false;
return x;
}
else if (!xp.red || (xpp = xp.parent) == null)
return root;
调整之后的二叉树:
②、加入节点50,二叉树如下:
继续执行balanceInsertion()
方法调整二叉树,此时节点50的父节点60是左儿子,走如下逻辑:
if (xp == (xppl = xpp.left)) {
if ((xppr = xpp.right) != null && xppr.red) {
xppr.red = false;
xp.red = false;
xpp.red = true;
x = xpp;
}
else {
if (x == xp.right) {
root = rotateLeft(root, x = xp);
xpp = (xp = x.parent) == null ? null : xp.parent;
}
if (xp != null) {
xp.red = false;
if (xpp != null) {
xpp.red = true;
root = rotateRight(root, xpp);
}
}
}
}
根据上述逻辑,把节点60设置成黑色,把节点80设置成红色,并对节点80执行右旋操作,右旋实现如下:
static <K,V> TreeNode<K,V> rotateRight(TreeNode<K,V> root,
TreeNode<K,V> p) {
TreeNode<K,V> l, pp, lr;
if (p != null && (l = p.left) != null) {
if ((lr = p.left = l.right) != null)
lr.parent = p;
if ((pp = l.parent = p.parent) == null)
(root = l).red = false;
else if (pp.right == p)
pp.right = l;
else
pp.left = l;
l.right = p;
p.parent = l;
}
return root;
}
右旋之后的红黑树如下:
③、加入节点70,二叉树如下:
继续执行balanceInsertion()
方法调整二叉树,此时父节点80是个右儿子,节点70是左儿子,且叔节点50不为空,且是红色的,则执行如下逻辑:
if (xppl != null && xppl.red) {
xppl.red = false;
xp.red = false;
xpp.red = true;
x = xpp;
}
此时二叉树如下:
此时x
指向xpp
,即节点60,继续循环处理x
,设置其颜色为黑色,最终二叉树如下:
④、加入节点20,二叉树变化如下:
因为节点20的父节点50是一个黑色的节点,不需要进行调整;
⑤、加入节点65,二叉树变化如下:
对节点80进行右旋操作。
⑥、加入节点40,二叉树变化如下:
1、对节点20执行左旋操作;
2、对节点50执行右旋操作;
最后加入节点10,二叉树变化如下:
重新对节点进行着色,到此为止,红黑树已经构造完成;
ConcurrentHashMap红黑树的实现的更多相关文章
- HashMap、ConcurrentHashMap红黑树实现分析
本文学习知识点 1.二叉查找树,以及二叉树查找带来的问题. 2.平衡二叉树及好处. 3.红黑树的定义及构造. 4.ConcurrentHashMap中红黑树的构造. 在正式分析红黑树之前,有必要了解红 ...
- 研究jdk关于TreeMap 红黑树算法实现
因为TreeMap的实现方式是用红黑树这种数据结构进行存储的,所以呢我主要通过分析红黑树的实现在看待TreeMap,侧重点也在于如何实现红黑树,因为网上已经有非常都的关于红黑树的实现.我也看了些,但是 ...
- 【Java源码】集合类-JDK1.8 哈希表-红黑树-HashMap总结
JDK 1.8 HashMap是数组+链表+红黑树实现的,在阅读HashMap的源码之前先来回顾一下大学课本数据结构中的哈希表和红黑树. 什么是哈希表? 在存储结构中,关键值key通过一种关系f和唯一 ...
- Java容器汇总【红黑树需要再次学习】
1,概述 2,Collection 2.1,Set[接触比较少] 2.1.1 TreeSet 底层由TreeMap实现 基于红黑树实现,支持有序性操作,例如根据一个范围查找元素的操作.但是查找效率不如 ...
- ConcurrenHashMap介绍1.8 中为什么要用红黑树
java8不是用红黑树来管理hashmap,而是在hash值相同的情况下(且重复数量大于8),用红黑树来管理数据. 红黑树相当于排序数据.可以自动的使用二分法进行定位.性能较高. 在Concurren ...
- HashMap1.7和1.8,红黑树原理!
jdk 1.7 概述 HashMap基于Map接口实现,元素以键值对的方式存储,并允许使用null键和null值,但只能有一个键作为null,因为key不允许重复,另外HashMap不能保证放入元素的 ...
- 红黑树——算法导论(15)
1. 什么是红黑树 (1) 简介 上一篇我们介绍了基本动态集合操作时间复杂度均为O(h)的二叉搜索树.但遗憾的是,只有当二叉搜索树高度较低时,这些集合操作才会较快:即当树的高度较高(甚至一种极 ...
- jdk源码分析红黑树——插入篇
红黑树是自平衡的排序树,自平衡的优点是减少遍历的节点,所以效率会高.如果是非平衡的二叉树,当顺序或逆序插入的时候,查找动作很可能会遍历n个节点 红黑树的规则很容易理解,但是维护这个规则难. 一.规则 ...
- 谈c++ pb_ds库(二) 红黑树大法好
厉害了,没想到翻翻pb_ds库看到这么多好东西,封装好的.现成的splay.红黑树.avl... 即使不能在考场上使用也可以用来对拍哦 声明/头文件 #include <ext/pb_ds/tr ...
随机推荐
- iTerm2 都不会用,还敢自称老司机?(上)
对于需要长期与终端打交道的工程师来说,拥有一款称手的终端管理器是很有必要的,对于 Windows 用户来说,最好的选择是 Xshell,这个大家都没有异议.但对于 MacOS 用户来说,仍然毋庸置疑, ...
- new Date在IOS下面的兼容问题
此问题坑爹啊,着实坑爹,要不是本宝宝鬼机灵再次进行了测试,不然测试都测不出来的问题,问题源头,有两个时间: let start = "2018-08-08 00:00:00" ; ...
- 日常破解--从XCTF的app3题目简单了解安卓备份文件以及sqliteCipher加密数据库
一.题目来源 题目来源:XCTF app3题目 二.解题过程 1.下载好题目,下载完后发现是.ab后缀名的文件,如下图所示: 2.什么是.ab文件?.ab后缀名的文件是Andr ...
- Redis(7)——持久化【一文了解】
一.持久化简介 Redis 的数据 全部存储 在 内存 中,如果 突然宕机,数据就会全部丢失,因此必须有一套机制来保证 Redis 的数据不会因为故障而丢失,这种机制就是 Redis 的 持久化机制, ...
- C++类的详解
目录 一.类成员的访问权限 二.成员变量的命名 三.构造函数 四.析构函数 五.C++程序也很优雅 六.类的其它知识 七.可变参数 八.课后作业 九.版权声明 超女选秀的例子我们玩了很久,为了学习的需 ...
- 把 GitHub 放入口袋,“开箱”官方客户端
GitHub 2019 开发者大会说要出的客户端,今天(2020.3.18)终于放出了下载.之前如果登记过的小伙伴应该也和我一样收到了下面样子的邮件: 好了,那么接下来我们就来"开箱&quo ...
- nuxt创建项目的步骤
nuxt创建项目的步骤 1.基本步骤 // 创建package.json依赖管理文件 npm init -y // 在package.json文件中添加运行nuxt的命令,之后npm run dev启 ...
- scrapy框架xpath的几点说明
1.xpath返回的是一个列表 2.调用Selector对象的extract方法将返回选中内容的Unicode字符串 SelectorList对象调用extract_first() 方法会返回其中第一 ...
- Python3 分数
limit_denominator()定义:通过限制分母的大小来取一个近似值提高精度.格式:fractionobject.limit_denominator('分母最大值') denominator定 ...
- 全国职业技能大赛信息安全管理与评估-一些细节tips
Base64加解密: ubuntu@VM-0-5-ubuntu:~$ echo iloveyou | base64aWxvdmV5b3UKubuntu@VM-0-5-ubuntu:~$ echo aW ...