STM32串口DMA接收数据错位——暴力解决方法
背景:两片STM32通过串口通信,为了减小CPU负担,采用DMA进行通信,发送端为STM32F103C8T6,接收端为STM32F407VET6。在调试的过程中发现,一直出现数据错位的问题,接收端尝试了串口空闲中断和串口DMA传输完成中断,错位问题依旧,其实我之前遇到过这个问题,那次发送端没有使用DMA,而是直接用串口发送,接收端采用DMA接收完成中断,检测到错位后,延时重置DMA,直到DMA接收同步后,不再重置,此后DMA便会保持同步,不会错位。但是这次不知道为什么采用上次的方法没有解决,因此决定直接用最简单粗暴的方法——查找,但是弊端是会在中断中运行一段比较占空时间的代码。
说明:主要部分在接收中断(本文最后的代码段),发送端发送的DMA数据长度为a,接收端DMA配置的BufferSize为2a,这样即使错位,在2a的数据长度中也一定会存在一段完整的有效数据。接收中断中,在接收buffer的前半段查找帧头,找到之后,判断帧头+a-1的位置是否是帧尾,如果是,则基本可以认为中间即为有效数据,将该段数据拷贝到一个新的数组中,等待解析。
配置部分:发送端 STM32F103C8T6
/* uart3 for communicate with the master */
void vUart3Config(void)
{
GPIO_InitTypeDef GPIO_InitStructure;
USART_InitTypeDef USART_InitStructure;
NVIC_InitTypeDef NVIC_InitStructure;
DMA_InitTypeDef DMA_InitStructure;
RCC_APB1PeriphClockCmd(RCC_APB1Periph_USART3, ENABLE);
RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOB, ENABLE);
RCC_AHBPeriphClockCmd(RCC_AHBPeriph_DMA1, ENABLE);
/* USART3_RX GPIOB.11 */
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_11;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN_FLOATING;
GPIO_Init(GPIOB, &GPIO_InitStructure);
/* USART3_TX GPIOB.10 */
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_10;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;
GPIO_Init(GPIOB, &GPIO_InitStructure);
NVIC_InitStructure.NVIC_IRQChannel = USART3_IRQn;
NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 3;
NVIC_InitStructure.NVIC_IRQChannelSubPriority = 2;
NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;
NVIC_Init(&NVIC_InitStructure);
USART_InitStructure.USART_BaudRate = 115200;
USART_InitStructure.USART_WordLength = USART_WordLength_8b;
USART_InitStructure.USART_StopBits = USART_StopBits_1;
USART_InitStructure.USART_Parity = USART_Parity_No;
USART_InitStructure.USART_HardwareFlowControl = USART_HardwareFlowControl_None;
USART_InitStructure.USART_Mode = USART_Mode_Rx | USART_Mode_Tx;
USART_Init(USART3, &USART_InitStructure);
USART_Cmd(USART3, ENABLE);
USART_ITConfig(USART3, USART_IT_RXNE, ENABLE);
{ /* send dma */
USART_DMACmd(USART3,USART_DMAReq_Tx,ENABLE);
DMA_DeInit(DMA1_Channel2);
DMA_InitStructure.DMA_PeripheralBaseAddr = (uint32_t)(&(USART3->DR));
DMA_InitStructure.DMA_MemoryBaseAddr = (uint32_t)SendToMaster_Buff;
DMA_InitStructure.DMA_DIR = DMA_DIR_PeripheralDST;
DMA_InitStructure.DMA_BufferSize = USART3_DMA_send_buffersize;
DMA_InitStructure.DMA_PeripheralInc = DMA_PeripheralInc_Disable;
DMA_InitStructure.DMA_MemoryInc = DMA_MemoryInc_Enable;
DMA_InitStructure.DMA_PeripheralDataSize = DMA_PeripheralDataSize_Byte;
DMA_InitStructure.DMA_MemoryDataSize = DMA_MemoryDataSize_Byte;
DMA_InitStructure.DMA_Mode = DMA_Mode_Circular;
DMA_InitStructure.DMA_Priority = DMA_Priority_VeryHigh;
DMA_InitStructure.DMA_M2M = DMA_M2M_Disable;
DMA_Init(DMA1_Channel2,&DMA_InitStructure);
NVIC_InitStructure.NVIC_IRQChannel = DMA1_Channel2_IRQn;
NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 1;
NVIC_InitStructure.NVIC_IRQChannelSubPriority = 1;
NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;
NVIC_Init(&NVIC_InitStructure);
DMA_ITConfig(DMA1_Channel2,DMA_IT_TC,ENABLE);
DMA_Cmd(DMA1_Channel2,ENABLE);
}
}
配置部分:接收端 STM32F407VET6
void vUTConfig(void)
{
USART_InitTypeDef usart;
GPIO_InitTypeDef gpio;
NVIC_InitTypeDef nvic;
DMA_InitTypeDef dma;
RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOA,ENABLE);
RCC_APB2PeriphClockCmd(RCC_APB2Periph_USART1,ENABLE);
RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_DMA2, ENABLE);
GPIO_PinAFConfig(GPIOA,GPIO_PinSource9 ,GPIO_AF_USART1);
GPIO_PinAFConfig(GPIOA,GPIO_PinSource10,GPIO_AF_USART1);
/* USART1_RX GPIOA.10 */
gpio.GPIO_Pin = GPIO_Pin_9|GPIO_Pin_10;
gpio.GPIO_Mode = GPIO_Mode_AF;
gpio.GPIO_OType = GPIO_OType_PP;
gpio.GPIO_Speed = GPIO_Speed_100MHz;
gpio.GPIO_PuPd = GPIO_PuPd_NOPULL;
GPIO_Init(GPIOA,&gpio);
usart.USART_BaudRate = 115200;
usart.USART_WordLength = USART_WordLength_8b;
usart.USART_StopBits = USART_StopBits_1;
usart.USART_Parity = USART_Parity_No;
usart.USART_Mode = USART_Mode_Rx | USART_Mode_Tx;
usart.USART_HardwareFlowControl = USART_HardwareFlowControl_None;
USART_Init(USART1,&usart);
USART_Cmd(USART1,ENABLE);
{ /* receive dma */
USART_DMACmd(USART1,USART_DMAReq_Rx,ENABLE);
DMA_DeInit(DMA2_Stream2);
dma.DMA_Channel= DMA_Channel_4;
dma.DMA_PeripheralBaseAddr = (uint32_t)&(USART1->DR);
dma.DMA_Memory0BaseAddr = (uint32_t)ReceiveFromUT_Buffer;
dma.DMA_DIR = DMA_DIR_PeripheralToMemory;
dma.DMA_BufferSize = USART1_UT_DMA_receive_buffersize;
dma.DMA_PeripheralInc = DMA_PeripheralInc_Disable;
dma.DMA_MemoryInc = DMA_MemoryInc_Enable;
dma.DMA_PeripheralDataSize = DMA_PeripheralDataSize_Byte;
dma.DMA_MemoryDataSize = DMA_MemoryDataSize_Byte;
dma.DMA_Mode = DMA_Mode_Circular;
dma.DMA_Priority = DMA_Priority_VeryHigh;
dma.DMA_FIFOMode = DMA_FIFOMode_Disable;
dma.DMA_FIFOThreshold = DMA_FIFOThreshold_1QuarterFull;
dma.DMA_MemoryBurst = DMA_MemoryBurst_Single;
dma.DMA_PeripheralBurst = DMA_PeripheralBurst_Single;
DMA_Init(DMA2_Stream2,&dma);
nvic.NVIC_IRQChannel = DMA2_Stream2_IRQn;
nvic.NVIC_IRQChannelPreemptionPriority = 1;
nvic.NVIC_IRQChannelSubPriority = 1;
nvic.NVIC_IRQChannelCmd = ENABLE;
NVIC_Init(&nvic);
DMA_ITConfig(DMA2_Stream2,DMA_IT_TC,ENABLE);
DMA_Cmd(DMA2_Stream2,ENABLE);
}
}
中断部分:发送中断
/* USART3 DMA send interrupt */
void DMA1_Channel2_IRQHandler(void)
{
if(DMA_GetITStatus(DMA1_IT_TC2))
{
DMA_ClearFlag(DMA1_IT_TC2);
DMA_ClearITPendingBit(DMA1_IT_TC2);
// DMA_Cmd(DMA1_Channel2,DISABLE);
// DMA_SetCurrDataCounter(DMA1_Channel2,USART3_DMA_send_buffersize);
// DMA_Cmd(DMA1_Channel2, ENABLE);
}
}
中断部分:接收中断
/* USART1 dma receive for ut */
void DMA2_Stream2_IRQHandler(void)
{
uint8_t i = 0;
if(DMA_GetFlagStatus(DMA2_Stream2,DMA_IT_TCIF2) == SET)
{
/* 在前半部分查找帧头并校验对应位置是否为帧尾 */
for(i=0;i<(USART1_UT_DMA_receive_buffersize/2);i++)
{
if((ReceiveFromUT_Buffer[i] == 0x05)&&(ReceiveFromUT_Buffer[i+USART1_UT_DMA_receive_buffersize-1] == 0x06))
{
/* 拷贝有效数据段到待解析数组 */
memcpy(ReceiveFromUT_Data,&ReceiveFromUT_Buffer[i],USART1_UT_DMA_receive_buffersize/2);
/* 数据解析 */
UTReceive();
}
}
/* 没有有效数据 */
if(i >= USART1_UT_DMA_receive_buffersize/2)
{
/* 重置DMA */
DMA_Cmd(DMA2_Stream2,DISABLE);
DMA_SetCurrDataCounter(DMA2_Stream2,USART1_UT_DMA_receive_buffersize);
DMA_Cmd(DMA2_Stream2,ENABLE);
}
DMA_ClearFlag(DMA2_Stream2, DMA_FLAG_TCIF2);
DMA_ClearITPendingBit(DMA2_Stream2, DMA_IT_TCIF2);
}
}
——cloudos
——2020/4/17
STM32串口DMA接收数据错位——暴力解决方法的更多相关文章
- STM32之串口DMA接收不定长数据
STM32之串口DMA接收不定长数据 引言 在使用stm32或者其他单片机的时候,会经常使用到串口通讯,那么如何有效地接收数据呢?假如这段数据是不定长的有如何高效接收呢? 同学A:数据来了就会进入串口 ...
- STM32 串口DMA方式接收(转)
STM32 是一款基于ARM Cortex-M3内核的32位MCU,主频最高可达72M.最近因为要在车机上集成TPMS功能, 便开始着手STM32的开发工作,STM32F10x系列共有5个串口(USA ...
- STM32输入捕获模式设置并用DMA接收数据
参考: STM32的PWM输入模式设置并用DMA接收数据 Input capture mode The input stage samples the corresponding TIx input ...
- STM32的PWM输入模式设置并用DMA接收数据
参考 :STM32输入捕获模式设置并用DMA接收数据 PWM input mode This mode is a particular case of input capture mode. The ...
- STM32库函数void USART_SendData的缺陷和解决方法
void USART_SendData()函数在快速发送时存在问题 有丢数据的可能 转自https://blog.csdn.net/qq_27114397/article/details/506015 ...
- PHP file_get_contents函数读取远程数据超时的解决方法
PHP file_get_contents函数读取远程数据超时的解决方法 投稿:junjie 字体:[增加 减小] 类型:转载 这篇文章主要介绍了PHP file_get_contents函数读取 ...
- [转]mysql导入导出数据中文乱码解决方法小结
本文章总结了mysql导入导出数据中文乱码解决方法,出现中文乱码一般情况是导入导入时编码的设置问题,我们只要把编码调整一致即可解决此方法,下面是搜索到的一些方法总结,方便需要的朋友. linux系统中 ...
- Android - "已安装了存在签名冲突的同名数据包",解决方法!
错误提示:已安装了存在签名冲突的同名数据包. 解决方法:打开Android Studio,打开logcat,用usb线连接你出错的手机,识别出手机之后,在你的项目后面,点击“run”按钮,随后AS会提 ...
- Qt串口通信接收数据不完整的解决方法
在使用串口接收数据时,当数据量大的时候会出现数据接收不完整的情况.因为串口数据获取函数readAll()由readyRead()信号触发,但readyRead()信号在串口读到起始标志时立即发送,并不 ...
随机推荐
- IBM Rational Rose软件下载以及全破解方法
最近忙着作业,软件设计的类图着实难画,于是整理了rose的下载和破解方法 Rational Rose是Rational公司出品的一种面向对象的统一建模语言的可视化建模工具.用于可视化建模和公司级水平软 ...
- C#对象初始化器
1.对象初始化器 Student objStu2 = new Student() { StudentId=, //属性之间使用","分隔 StudentName="小明& ...
- abp(net core)+easyui+efcore实现仓储管理系统——入库管理之十一(四十七)
abp(net core)+easyui+efcore实现仓储管理系统目录 abp(net core)+easyui+efcore实现仓储管理系统——ABP总体介绍(一) abp(net core)+ ...
- jQuery如何使用键盘事件,按住空格键完成进度条效果,并终止键盘事件
jQuery使用键盘事件 keyup:键盘抬起时 keydown:键盘按下时 keypress:键盘按住时 运行下列代码,可以看效果 $(document).keyup(function () { c ...
- CC2530定时器的应用
[例1]利用定时器计数实现5中彩灯的变化形式,基于模模式的.两个标志位,一个是定时器计数,一个是彩灯的状态. #include "ioCC2530.h" #define D3 P1 ...
- 【Hadoop离线基础总结】MapReduce入门
MapReduce入门 Mapreduce思想 概述 MapReduce的思想核心是分而治之,适用于大量复杂的任务处理场景(大规模数据处理场景). 最主要的特点就是把一个大的问题,划分成很多小的子问题 ...
- IO 模型知多少 | 代码篇
引言 之前的一篇介绍IO 模型的文章IO 模型知多少 | 理论篇 比较偏理论,很多同学反应不是很好理解.这一篇咱们换一个角度,从代码角度来分析一下. socket 编程基础 开始之前,我们先来梳理一下 ...
- 简述SpringCloud底层原理
目录 一.业务场景介绍 二.Spring Cloud核心组件:Eureka 三.Spring Cloud核心组件:Feign 四.Spring Cloud核心组件:Ribbon 五.Spring Cl ...
- Taro UI开发小程序实现左滑喜欢右滑不喜欢效果
前言:年后入职了一家新公司,与前同事交接完之后,发现公司有一个四端的项目(iOS,Android,H5,小程序),iOS和安卓都实现了左滑右滑的效果,而h5和小程序端没实现,询问得知前同事因网上没找到 ...
- linux --开机自动挂载硬盘【转】
转:http://c.biancheng.net/view/900.html 了解了 mount 命令之后,读者可能会问,系统如何在开机时自动挂载硬盘,它又是怎么知道哪些分区是需要挂载的呢? 很简单, ...