单调队列的练习题解

前言:

在上一篇学习记录中,单调队列给出了几道练习题,因为这两道题的算法以及思路相差无几(几乎可以算是双倍经验quq),所以就在这里集中写一下相关的题解

前置知识:

见:队列专题(queue、priority_queue、deque) qvq


切蛋糕:

洛谷P1714

  • 题目简述:

    给定n个元素的值Pi,窗口最大限度m,要求找出连续k(0<=k<=m)个元素,使得这些元素和最大,输出这个最大值

  • 数据范围:

    对100%的数据,M≤N≤500000,|Pi|≤500。 答案保证在2^31-1之内

  • 算法:

    单调队列deque&前缀和

  • 解题思路:

(1)看到求连续一段区间最大值问题,便想到了用前缀和来维护,再循环模拟k的取值,然后每次用ans来比较取最大值

(2)打出纯前缀和代码,会得到40pts,其它意料之中的T掉,说明肯定还有其他算法

(3)我们需要维护长度为k的最大前缀和,所以想到了使用单调队列(好勉强啊...说实话不看算法标签我肯定想不到)

(4)单调队列的实现:当队尾存储的前缀和大于当前前缀和时,将当前前缀和存入队列中(因为计算前缀和需要减去前面的,不好理解可以看代码),再判断当前队首元素是否在窗口限度以内,最后用ans比较存储最大值再输出即可

  • 代码Code:

(1)40pts的纯前缀和代码:

#include <bits/stdc++.h>
using namespace std;
int n,m,ans,a[1000001],sum[1000001]; int main() {
scanf("%d%d",&n,&m);
for(register int i=1;i<=n;i++) {
scanf("%d",&a[i]);
sum[i]=sum[i-1]+a[i];
}
for(register int k=1;k<=m;k++) {
for(register int i=k;i<=n;i++) {
ans=max(ans,sum[i]-sum[i-k]);
}
}
printf("%d",ans);
return 0;
}

(2)AC的前缀和+单调队列代码:

#include <bits/stdc++.h>
using namespace std;
int n,m,ans,a[5000001],sum[5000001]; deque<int> shan; int main() {
scanf("%d%d",&n,&m);
for(register int i=1;i<=n;i++) {
scanf("%d",&a[i]);
sum[i]=sum[i-1]+a[i];
}
for(register int i=1;i<=n;i++) {
while(!shan.empty()&&sum[shan.back()]>sum[i]) shan.pop_back();
shan.push_back(i);
while(shan.front()<i-m) shan.pop_front();
ans=max(ans,sum[i]-sum[shan.front()]);
}
printf("%d",ans);
return 0;
}

好消息,坏消息:

洛谷P2629

  • 题目简述:

    给定n个消息的好坏度Ai,要求找出所有满足在告诉Boss全部消息过程中老板心情一直不低于0的方案总数

  • 数据范围:

    对于100%数据n<=10^6,-1000 <= Ai <= 1000

  • 算法:

    前缀和&单调队列deque

  • 解题思路:

    (1)还是先暴力一发,能得到75pts,因为时间复杂度是O(n^2),所以考虑优化

(2)因为是区间,所以还要使用前缀和来维护区间最值

(3)但是这道题并不是单独的求某一区间的最值,而是要求某一区间内的前缀和都不小于0,所以我们会想到合并石子的思路破环为链

(4)开两倍数组,复制一遍前n个数,这样方便我们枚举所有情况,然后使用单调队列求出某一区间内的前缀和的最小值,再判断减去前面的前缀和后是否小于0,不是的话方案数++,于是我们就有了A掉这道题的满分思路

  • 代码Code:

(1)75pts的暴力前缀和:

#include<bits/stdc++.h>
using namespace std;
int read(){
int x=0,f=1;
char ch=getchar();
while(ch<'0' || ch>'9'){ if(ch=='-') f=-1;ch=getchar();}//读取正负号
while(ch>='0' && ch<='9'){x=(x<<3)+(x<<1)+ch-'0';ch=getchar();}//x<<3=x*8,x<<1=x*2,合起来便是x*10了
return x*f;
}
int n;
int a[2000005];
int sum[2000005];
bool check(int now) {
for(register int j=0; j<n; j++) {
if(sum[now+j]-sum[now-1]<0) return false;
}
return true;
}
int main() {
n=read();
// scanf("%d",&n);
for(register int i=1; i<=n; i++) {
a[i]=read();
// scanf("%d",&a[i]);
a[i+n]=a[i];
sum[i]=sum[i-1]+a[i];
}
int tot=1;
for(register int i=n+1; i<=2*n-1; i++) {
sum[i]=sum[i-1]+a[tot];
tot++;
}
int ans=0;
for(register int i=1; i<=n; i++) {
if(check(i)==true) ans++;
}
printf("%d",ans);
return 0;
}

(2)单调队列+前缀和的满分代码:

#include <bits/stdc++.h>
using namespace std;
int n,ans,a[2000010],sum[2000010]; deque<int> shan; int main() {
scanf("%d",&n);
for(register int i=1;i<=n;i++) {
scanf("%d",&a[i]);
a[i+n]=a[i]; //破环为链
}
for(register int i=1;i<2*n;i++) sum[i]=sum[i-1]+a[i]; //记录前缀和
for(register int i=1;i<2*n;i++) { //枚举
while(!shan.empty()&&sum[shan.back()]>=sum[i]) shan.pop_back(); //deque来维护前缀和最小值
shan.push_back(i);
if(i>=n) {
while(!shan.empty()&&shan.front()<i-n) shan.pop_front(); //处理队首元素超过窗口最大限度的情况(本题窗口限度就是n)
if(sum[shan.front()]>=sum[i-n]) ans++; //如果满足条件,方案数++
}
}
printf("%d",ans);
return 0;
}

吐槽一下:我真的是炒鸡炒鸡蒻啊啊啊啊!!!第二个做法的代码里面前缀和只记录了前n个数的前缀和(晕)...结果...结果...调了半个多小时求助旁边的WS大佬才发现(我去QAQ)

再来一发WS大佬的题解:好消息,坏消息


单调队列练习题解(切蛋糕&好消息,坏消息)的更多相关文章

  1. 【洛谷】【动态规划+单调队列】P1714 切蛋糕

    [题目描述:] 今天是小Z的生日,同学们为他带来了一块蛋糕.这块蛋糕是一个长方体,被用不同色彩分成了N个相同的小块,每小块都有对应的幸运值. 小Z作为寿星,自然希望吃到的第一块蛋糕的幸运值总和最大,但 ...

  2. 线段树【p2629】 好消息,坏消息

    顾z 你没有发现两个字里的blog都不一样嘛 qwq 题目描述-->p2629 好消息,坏消息 历程 刚开始看到这个题,发现是需要维护区间和,满心欢喜敲了一通线段树,简单debug之后交上去 \ ...

  3. 2019牛客多校第三场F Planting Trees(单调队列)题解

    题意: 求最大矩阵面积,要求矩阵内数字满足\(max - min < m\) 思路: 枚举上下长度,在枚举的时候可以求出每一列的最大最小值\(cmax,cmin\),这样问题就变成了求一行数,要 ...

  4. 洛谷 P1714 切蛋糕 单调队列

    这个题比较显然,要用前缀和来做.但只用前缀和是过不去的,会TLE,所以需要进行优化. 对于每个前缀和数组 b 中的元素,都可以找到以 b[i] 结尾的子段最大值 p[i],显然,最终的 ans 就是 ...

  5. 【单调队列】【P1714】 切蛋糕

    传送门 Description 今天是小Z的生日,同学们为他带来了一块蛋糕.这块蛋糕是一个长方体,被用不同色彩分成了N个相同的小块,每小块都有对应的幸运值. 小Z作为寿星,自然希望吃到的第一块蛋糕的幸 ...

  6. P1714 切蛋糕 dp+单调队列

    题意: 题目描述 在幻想乡,琪露诺是以笨蛋闻名的冰之妖精. 某一天,琪露诺又在玩速冻青蛙,就是用冰把青蛙瞬间冻起来.但是这只青蛙比以往的要聪明许多,在琪露诺来之前就已经跑到了河的对岸.于是琪露诺决定到 ...

  7. 【P1714】切蛋糕(单调队列)

    实在不明白难度等级,难不成前缀和是个很变态的东西? 说白了就是单调队列裸题,都没加什么别的东西,就是一个前缀和的计算,然而这个题也不是要用它优化,而是必须这么做啊. #include<iostr ...

  8. luogu P1714 切蛋糕 单调队列

    单调队列傻题. 考虑以 $i$ 结尾的答案 : $max(sumv_{i}-sumv_{j}),j \in [i-m,i-1]$ ($sumv_{i}$ 为前缀和) 稍微搞一搞,发现 $sumv_{i ...

  9. 洛谷P1714 切蛋糕(单调队列)

    先放代码...... 1 #include<bits/stdc++.h> 2 using namespace std; 3 const int N=5e5+10,M=0x3f3f3f3f; ...

随机推荐

  1. Java实现 LeetCode 384 打乱数组

    384. 打乱数组 打乱一个没有重复元素的数组. 示例: // 以数字集合 1, 2 和 3 初始化数组. int[] nums = {1,2,3}; Solution solution = new ...

  2. Java实现 LeetCode 1013 将数组分成和相等的三个部分

    1013. 将数组分成和相等的三个部分 给你一个整数数组 A,只有可以将其划分为三个和相等的非空部分时才返回 true,否则返回 false. 形式上,如果可以找出索引 i+1 < j 且满足 ...

  3. Java实现 蓝桥杯 历届试题 九宫重排

    问题描述 如下面第一个图的九宫格中,放着 1~8 的数字卡片,还有一个格子空着.与空格子相邻的格子中的卡片可以移动到空格中.经过若干次移动,可以形成第二个图所示的局面. 我们把第一个图的局面记为:12 ...

  4. Java实现第十届蓝桥杯数列求值

    试题 C: 数列求值 本题总分:10 分 [问题描述] 给定数列 1, 1, 1, 3, 5, 9, 17, -,从第 4 项开始,每项都是前 3 项的和.求 第 20190324 项的最后 4 位数 ...

  5. java实现第六届蓝桥杯空心菱形

    空心菱形 标题:空心菱形 小明刚刚开发了一个小程序,可以打印出任意规模的空心菱形,规模为6时,如下图: ****** ****** ***** ***** **** **** *** *** ** * ...

  6. java实现第五届蓝桥杯猜年龄

    猜年龄 题目描述 小明带两个妹妹参加元宵灯会.别人问她们多大了,她们调皮地说:"我们俩的年龄之积是年龄之和的6倍".小明又补充说:"她们可不是双胞胎,年龄差肯定也不超过8 ...

  7. portapack发射GPS的信号实现GPS脱机模拟器

    要注意portapack必须要购买带高精度晶振的版本,另外固件要刷gridRF版本,用官方的或者havoc的都不行. 固件在这下载: 链接: https://pan.baidu.com/s/16flB ...

  8. Fiddler13模拟弱网络环境测试

    前言现在的Android软件,基本上都会有网络请求,有些APP需要频繁的传输数据时对于网络请求的稳定性和在特殊网络条件下的兼容性有要求,但是我们在测试的时候又很难模拟那种弱网络差网络的情况,今天就给大 ...

  9. mysql基础之-mysql锁和事务(七)

    0x01 MySQL锁: 执行操作时施加锁的模式 读锁:用户在读的时候施加的锁,为防止别人修改,但是用户可以读,还被称为共享锁 不会对其他用户进行阻塞 理解: ----->(这里的不阻塞,是可以 ...

  10. AWS 创建redis 集群模式遇到的问题

    问题描述 前几天在aws 平台创建了Redis 集群模式,但是链接集群的时候发现无法连接,返回信息超时. 通过参数组创建redis的时候提示报错:Replication group with spec ...