关于利用python进行验证码识别的一些想法
转载:@小五义http://www.cnblogs.com/xiaowuyi
用python加“验证码”为关键词在baidu里搜一下,可以找到很多关于验证码识别的文章。我大体看了一下,主要方法有几类:一类是通过对图片进行处理,然后利用字库特征匹配的方法,一类是图片处理后建立字符对应字典,还有一类是直接利用ocr模块进行识别。不管是用什么方法,都需要首先对图片进行处理,于是试着对下面的验证码进行分析。
一、图片处理
这个验证码中主要的影响因素是中间的曲线,首先考虑去掉图片中的曲线。考虑了两种算法:
第一种是首先取到曲线头的位置,即x=0时,黑点的位置。然后向后移动x的取值,观察每个x下黑点的位置,判断前后两个相邻黑点之间的距离,如果距离在一定范围内,可以基本判断该点是曲线上的点,最后将曲线上的点全部绘成白色。试了一下这种方法,结果得到的图片效果很一般,曲线不能完全去除,而且容量将字符的线条去除。
第二种考虑用单位面积内点的密度来进行计算。于是首先计算单位面积内点的个数,将单位面积内点个数少于某一指定数的面积去除,剩余的部分基本上就是验证码字符的部分。本例中,为了便于操作,取了5*5做为单位范围,并调整单位面积内点的标准密度为11。处理后的效果:
二、字符验证
这里我使用的方法是利用pytesser进行ocr识别,但由于这类验证码字符的不规则性,使得验证结果的准确性并不是很高。具体哪位大牛,有什么好的办法,希望能给指点一下。
三、准备工作与代码实例
1、PIL、pytesser、tesseract
(1)安装PIL:下载地址:http://www.pythonware.com/products/pil/
(2)pytesser:下载地址:http://code.google.com/p/pytesser/,下载解压后直接放在代码相同的文件夹下,即可使用。
(3)Tesseract OCR engine下载:http://code.google.com/p/tesseract-ocr/,下载后解压,找到tessdata文件夹,用其替换掉pytesser解压后的tessdata文件夹即可。
2、具体代码

#encoding=utf-8
###利用点的密度计算
import Image,ImageEnhance,ImageFilter,ImageDraw
import sys
from pytesser import *
#计算范围内点的个数
def numpoint(im):
w,h = im.size
data = list( im.getdata() )
mumpoint=0
for x in range(w):
for y in range(h):
if data[ y*w + x ] !=255:#255是白色
mumpoint+=1
return mumpoint #计算5*5范围内点的密度
def pointmidu(im):
w,h = im.size
p=[]
for y in range(0,h,5):
for x in range(0,w,5):
box = (x,y, x+5,y+5)
im1=im.crop(box)
a=numpoint(im1)
if a<11:##如果5*5范围内小于11个点,那么将该部分全部换为白色。
for i in range(x,x+5):
for j in range(y,y+5):
im.putpixel((i,j), 255)
im.save(r'img.jpg') def ocrend():##识别
image_name = "img.jpg"
im = Image.open(image_name)
im = im.filter(ImageFilter.MedianFilter())
enhancer = ImageEnhance.Contrast(im)
im = enhancer.enhance(2)
im = im.convert('1')
im.save("1.tif")
print image_file_to_string('1.tif') if __name__=='__main__':
image_name = "1.png"
im = Image.open(image_name)
im = im.filter(ImageFilter.DETAIL)
im = im.filter(ImageFilter.MedianFilter()) enhancer = ImageEnhance.Contrast(im)
im = enhancer.enhance(2)
im = im.convert('1')
##a=remove_point(im)
pointmidu(im)
ocrend()

本人的这个方法,最终识别率确实不高,写出来,哪位高手有好的思路或者做法,望不惜赐教!
关于利用python进行验证码识别的一些想法的更多相关文章
- Python - PIL-pytesseract-tesseract验证码识别
N天前实现了简单的验证识别,这玩意以前都觉得是高大上的东西,一直没有去研究,这次花了点时间研究了一下,当然只是一些基础的东西,高深的我也不会,分享一下给大家吧. 关于python验证码识别库,网上主要 ...
- Python之验证码识别功能
Python之pytesseract 识别验证码 1.验证码来一个 2.适合什么样的验证码呢? 只能识别简单.静态.无重叠.只有数字字母的验证码 3.实际应用:模拟人工登录.页面内容识别.爬虫抓取信息 ...
- python之验证码识别 特征向量提取和余弦相似性比较
0.目录 1.参考2.没事画个流程图3.完整代码4.改进方向 1.参考 https://en.wikipedia.org/wiki/Cosine_similarity https://zh.wikip ...
- Mac python Tesseract 验证码识别
Tesseract 简介 Tesseract(/'tesərækt/) 这个词的意思是"超立方体",指的是几何学里的四维标准方体,又称"正八胞体".不过这里要讲 ...
- python 豆瓣验证码识别总结
总结: pytesseract 识别比较标准的图片 识别成功率 还是不错的. 验证码的图片识别 需要先处理好 再用pytesseract 识别 from PIL import Image ...
- python语言验证码识别,以后不用老输入验证码了。
1.Python 3.6 安装包 1.要加环境变量 2.pip安装PIL库 3.pip安装pytesseract模块 2.tesseract-ocr-setup-4.00.00dev.exe -- ...
- 利用Python突破验证码限制
一.实验说明 本实验将通过一个简单的例子来讲解破解验证码的原理,将学习和实践以下知识点: Python基本知识 PIL模块的使用 二.实验内容 安装 pillow(PIL)库: $ sudo apt- ...
- python简单验证码识别
在学习python通过接口自动登录网站时,用户名密码.cookies.headers都好解决但是在碰到验证码这个时就有点棘手了:于是通过网上看贴,看官网完成了对简单验证码的识别,如果是复杂的请看大神的 ...
- 利用tesseract-ocr进行验证码识别
因为爬虫项目需要模拟登陆,可是有一个网站的登录需要输入验证码.其实这种登录有2种解决方案,一种是利用cookie,一种是识别图片.前者需要人工登录一次,而且有时效限制,故不太现实.后者可以,但是难点是 ...
随机推荐
- Vue源码之组件化/生命周期(个人向)
大致流程 具体流程 组件化 (createComponent) 构造⼦类构造函数 const baseCtor = context.$options._base // plain options ob ...
- C++走向远洋——32(项目一内全部成员函数)
*/ * Copyright (c) 2016,烟台大学计算机与控制工程学院 * All rights reserved. * 文件名:fenshu.cpp * 作者:常轩 * 微信公众号:World ...
- 记一个 Base64 有关的 Bug
本文原计划写两部分内容,第一是记录最近遇到的与 Base64 有关的 Bug,第二是 Base64 编码的原理详解.结果写了一半发现,诶?不复杂的一个事儿怎么也要讲这么长?不利于阅读和理解啊(其实是今 ...
- [翻译]python3中新的字符串格式化方法-----f-string
从python3.6开始,引入了新的字符串格式化方式,f-字符串. 这使得格式化字符串变得可读性更高,更简洁,更不容易出现错误而且速度也更快. 在本文后面,会详细介绍f-字符串的用法. 在此之前,让我 ...
- LeetCode 33.Search in Rotated Sorted Array(M)
题目: Suppose an array sorted in ascending order is rotated at some pivot unknown to you beforehand. ( ...
- ubuntu16.04安装库、插件报错:
安装一些插件.库,遇到报错 Could not fetch URL https://pypi.org/simple/pytest-pycodestyle/: There was a problem c ...
- DUBBO 面试灵魂18问
一.Dubbo 是什么 dubbo 是一个分布式框架,是一个远程服务调用的分布式框架,其核心部分包含: 1)集群容错: 提供基于接口方法的透明远程过程调用,包含多协议支持,以及软负债均衡.失败容错.地 ...
- 复盘MySQL分页查询优化方案
一.前言 MySQL分页查询作为Java面试的一道高频面试题,这里有必要实践一下,毕竟实践出真知. 很多同学在做测试时苦于没有海量数据,官方其实是有一套测试库的. 二.模拟数据 这里模拟数据分2种情况 ...
- Linux基本操作及常用指令
今天复习了下Linux的基本操作及常用指令,上学期大数据云计算课一直也在用linux系统还是比较熟悉的,并在centos6.7虚拟机上部署了前几天做的web项目,了解了Nginx的反向代理与负载均衡, ...
- ios background task
今天要实现一个需求,当用户触摸HOME键,将应用切换到后台时,启动自动备份的任务.这涉及到ios的后台任务处理,本文简单总结一下 首先,ios app有5种状态,分别是:not running, in ...