转载:@小五义http://www.cnblogs.com/xiaowuyi

用python加“验证码”为关键词在baidu里搜一下,可以找到很多关于验证码识别的文章。我大体看了一下,主要方法有几类:一类是通过对图片进行处理,然后利用字库特征匹配的方法,一类是图片处理后建立字符对应字典,还有一类是直接利用ocr模块进行识别。不管是用什么方法,都需要首先对图片进行处理,于是试着对下面的验证码进行分析。
        一、图片处理

这个验证码中主要的影响因素是中间的曲线,首先考虑去掉图片中的曲线。考虑了两种算法:
        第一种是首先取到曲线头的位置,即x=0时,黑点的位置。然后向后移动x的取值,观察每个x下黑点的位置,判断前后两个相邻黑点之间的距离,如果距离在一定范围内,可以基本判断该点是曲线上的点,最后将曲线上的点全部绘成白色。试了一下这种方法,结果得到的图片效果很一般,曲线不能完全去除,而且容量将字符的线条去除。
        第二种考虑用单位面积内点的密度来进行计算。于是首先计算单位面积内点的个数,将单位面积内点个数少于某一指定数的面积去除,剩余的部分基本上就是验证码字符的部分。本例中,为了便于操作,取了5*5做为单位范围,并调整单位面积内点的标准密度为11。处理后的效果:

二、字符验证
        这里我使用的方法是利用pytesser进行ocr识别,但由于这类验证码字符的不规则性,使得验证结果的准确性并不是很高。具体哪位大牛,有什么好的办法,希望能给指点一下。
        三、准备工作与代码实例
        1、PIL、pytesser、tesseract
        (1)安装PIL:下载地址:http://www.pythonware.com/products/pil/
        (2)pytesser:下载地址:http://code.google.com/p/pytesser/,下载解压后直接放在代码相同的文件夹下,即可使用。
        (3)Tesseract OCR engine下载:http://code.google.com/p/tesseract-ocr/,下载后解压,找到tessdata文件夹,用其替换掉pytesser解压后的tessdata文件夹即可。
        2、具体代码

#encoding=utf-8
###利用点的密度计算
import Image,ImageEnhance,ImageFilter,ImageDraw
import sys
from pytesser import *
#计算范围内点的个数
def numpoint(im):
w,h = im.size
data = list( im.getdata() )
mumpoint=0
for x in range(w):
for y in range(h):
if data[ y*w + x ] !=255:#255是白色
mumpoint+=1
return mumpoint #计算5*5范围内点的密度
def pointmidu(im):
w,h = im.size
p=[]
for y in range(0,h,5):
for x in range(0,w,5):
box = (x,y, x+5,y+5)
im1=im.crop(box)
a=numpoint(im1)
if a<11:##如果5*5范围内小于11个点,那么将该部分全部换为白色。
for i in range(x,x+5):
for j in range(y,y+5):
im.putpixel((i,j), 255)
im.save(r'img.jpg') def ocrend():##识别
image_name = "img.jpg"
im = Image.open(image_name)
im = im.filter(ImageFilter.MedianFilter())
enhancer = ImageEnhance.Contrast(im)
im = enhancer.enhance(2)
im = im.convert('1')
im.save("1.tif")
print image_file_to_string('1.tif') if __name__=='__main__':
image_name = "1.png"
im = Image.open(image_name)
im = im.filter(ImageFilter.DETAIL)
im = im.filter(ImageFilter.MedianFilter()) enhancer = ImageEnhance.Contrast(im)
im = enhancer.enhance(2)
im = im.convert('1')
##a=remove_point(im)
pointmidu(im)
ocrend()

本人的这个方法,最终识别率确实不高,写出来,哪位高手有好的思路或者做法,望不惜赐教!

关于利用python进行验证码识别的一些想法的更多相关文章

  1. Python - PIL-pytesseract-tesseract验证码识别

    N天前实现了简单的验证识别,这玩意以前都觉得是高大上的东西,一直没有去研究,这次花了点时间研究了一下,当然只是一些基础的东西,高深的我也不会,分享一下给大家吧. 关于python验证码识别库,网上主要 ...

  2. Python之验证码识别功能

    Python之pytesseract 识别验证码 1.验证码来一个 2.适合什么样的验证码呢? 只能识别简单.静态.无重叠.只有数字字母的验证码 3.实际应用:模拟人工登录.页面内容识别.爬虫抓取信息 ...

  3. python之验证码识别 特征向量提取和余弦相似性比较

    0.目录 1.参考2.没事画个流程图3.完整代码4.改进方向 1.参考 https://en.wikipedia.org/wiki/Cosine_similarity https://zh.wikip ...

  4. Mac python Tesseract 验证码识别

    Tesseract 简介 Tesseract(/'tesərækt/) 这个词的意思是"超立方体",指的是几何学里的四维标准方体,又称"正八胞体".不过这里要讲 ...

  5. python 豆瓣验证码识别总结

    总结:  pytesseract 识别比较标准的图片  识别成功率   还是不错的. 验证码的图片识别 需要先处理好   再用pytesseract 识别 from PIL import Image  ...

  6. python语言验证码识别,以后不用老输入验证码了。

    1.Python 3.6 安装包 1.要加环境变量 2.pip安装PIL库 3.pip安装pytesseract模块 2.tesseract-ocr-setup-4.00.00dev.exe   -- ...

  7. 利用Python突破验证码限制

    一.实验说明 本实验将通过一个简单的例子来讲解破解验证码的原理,将学习和实践以下知识点: Python基本知识 PIL模块的使用 二.实验内容 安装 pillow(PIL)库: $ sudo apt- ...

  8. python简单验证码识别

    在学习python通过接口自动登录网站时,用户名密码.cookies.headers都好解决但是在碰到验证码这个时就有点棘手了:于是通过网上看贴,看官网完成了对简单验证码的识别,如果是复杂的请看大神的 ...

  9. 利用tesseract-ocr进行验证码识别

    因为爬虫项目需要模拟登陆,可是有一个网站的登录需要输入验证码.其实这种登录有2种解决方案,一种是利用cookie,一种是识别图片.前者需要人工登录一次,而且有时效限制,故不太现实.后者可以,但是难点是 ...

随机推荐

  1. 9——PHP循环结构foreach用法

    */ * Copyright (c) 2016,烟台大学计算机与控制工程学院 * All rights reserved. * 文件名:text.cpp * 作者:常轩 * 微信公众号:Worldhe ...

  2. win10环境下VS2019配置NTL库

    win10环境下VS2019配置NTL库 1.下载 WINNTL库文件     https://www.shoup.net/ntl/download.html 2.创建静态库 文件->新建-&g ...

  3. 浅谈ConcurrentDictionary与Dictionary

    在.NET4.0之前,如果我们需要在多线程环境下使用Dictionary类,除了自己实现线程同步来保证线程安全外,我们没有其他选择.很多开发人员肯定都实现过类似的线程安全方案,可能是通过创建全新的线程 ...

  4. ArrayList集合不能使用foreach增加、删除、修改元素的原因

    大家先看两段代码 第一段代码: List<String> arrayList1 = new ArrayList<String>(); arrayList1.add(" ...

  5. All In One

    set1 https://github.com/tianhang-f... set2 https://github.com/tianhang/F... set3https://github.com/t ...

  6. 多图文,详细介绍mysql各个集群方案

    目录 多图文,详细介绍mysql各个集群方案 一,mysql原厂出品 二,mysql第三方优化 三,依托硬件配合 四,其它 多图文,详细介绍mysql各个集群方案 集群的好处 高可用性:故障检测及迁移 ...

  7. 基于正向扫描的并行区间连接平面扫描算法(IEEE论文)

    作者: Panagiotis Bouros ∗Department of Computer ScienceAarhus University, Denmarkpbour@cs.au.dkNikos M ...

  8. 第一个爬虫经历----豆瓣电影top250(经典案例)

    因为要学习数据分析,需要从网上爬取数据,所以开始学习爬虫,使用python进行爬虫,有好几种模拟发送请求的方法,最基础的是使用urllib.request模块(python自带,无需再下载),第二是r ...

  9. mac笔记本编译go-ethereum报错CoreServices/CoreServices.h' file not found

    查看xcode是否安装: $ xcode-select --install xcode-select: error: command line tools are already installed, ...

  10. js中字符串 stringObject 的 replace() 方法

    一.定义 replace() 方法用于在字符串中用一些字符替换另一些字符,或替换一个与正则表达式匹配的字符串. 二.语法 stringObject.replace(regexp/substr,repl ...