poj 2318(叉积判断点在线段的哪一侧)
Time Limit: 2000MS | Memory Limit: 65536K | |
Total Submissions: 13120 | Accepted: 6334 |
Description
Mom and dad have a problem - their child John never puts his toys
away when he is finished playing with them. They gave John a rectangular
box to put his toys in, but John is rebellious and obeys his parents by
simply throwing his toys into the box. All the toys get mixed up, and
it is impossible for John to find his favorite toys.
John's parents came up with the following idea. They put cardboard
partitions into the box. Even if John keeps throwing his toys into the
box, at least toys that get thrown into different bins stay separated.
The following diagram shows a top view of an example toy box.
For this problem, you are asked to determine how many toys fall into each partition as John throws them into the toy box.
Input
input file contains one or more problems. The first line of a problem
consists of six integers, n m x1 y1 x2 y2. The number of cardboard
partitions is n (0 < n <= 5000) and the number of toys is m (0
< m <= 5000). The coordinates of the upper-left corner and the
lower-right corner of the box are (x1,y1) and (x2,y2), respectively. The
following n lines contain two integers per line, Ui Li, indicating that
the ends of the i-th cardboard partition is at the coordinates (Ui,y1)
and (Li,y2). You may assume that the cardboard partitions do not
intersect each other and that they are specified in sorted order from
left to right. The next m lines contain two integers per line, Xj Yj
specifying where the j-th toy has landed in the box. The order of the
toy locations is random. You may assume that no toy will land exactly on
a cardboard partition or outside the boundary of the box. The input is
terminated by a line consisting of a single 0.
Output
output for each problem will be one line for each separate bin in the
toy box. For each bin, print its bin number, followed by a colon and one
space, followed by the number of toys thrown into that bin. Bins are
numbered from 0 (the leftmost bin) to n (the rightmost bin). Separate
the output of different problems by a single blank line.
Sample Input
5 6 0 10 60 0
3 1
4 3
6 8
10 10
15 30
1 5
2 1
2 8
5 5
40 10
7 9
4 10 0 10 100 0
20 20
40 40
60 60
80 80
5 10
15 10
25 10
35 10
45 10
55 10
65 10
75 10
85 10
95 10
0
Sample Output
0: 2
1: 1
2: 1
3: 1
4: 0
5: 1 0: 2
1: 2
2: 2
3: 2
4: 2 题意:给定n根线段将平面分成n+1个区域,然后给m个点,分散在大平面内,问每个区域内有多少个点
分析:对于每个点,我们只要利用叉积判断是否在某条线段逆时针方向就行了.这个题的点数应该开10000.
有二分的做法,比我这个应该要快不少,暴力938MS
叉积的性质:设矢量 P = (x1, y1), Q = (x2, y2),则 P * Q = x1 * y2 - x2 * y1; 其结果是一个由 (0, 0), P, Q, P + Q 所组成的平行四边形的 带符号的面积,P * Q = -(Q * P), P * (- Q) = -(P * Q)。
叉积的一个非常重要的性质是可以通过它的符号来判断两矢量相互之间的顺逆时针关系:
若 P * Q > 0,则 P 在 Q 的顺时针方向;
若 P * Q < 0, 则 P 在 Q 的逆时针方向;
若 P * Q = 0,则 P 与 Q 共线,但不确定 P, Q 的方向是否相同;
#include <iostream>
#include <cstdio>
#include <string.h>
#include <math.h>
#include <algorithm>
using namespace std;
const int N = ;
struct Point
{
int x,y;
} p[N],q[N];
int n,m,x1,y11,x2,y2; bool used[N];///判断点是否已经被选过了
int cnt[N]; ///判断某区域的点数量 int mult(Point a,Point b,Point c){
return (a.x-c.x)*(b.y-c.y)-(a.y-c.y)*(b.x-c.x);
} int main()
{
while(scanf("%d",&n)!=EOF,n)
{
scanf("%d%d%d%d%d",&m,&x1,&y11,&x2,&y2);
memset(used,false,sizeof(used));
memset(cnt,,sizeof(cnt));
int k=;
for(int i=;i<=n;i++){
scanf("%d%d",&p[k].x,&p[k+].x);
p[k].y=y11,p[k+].y=y2;
k+=;
}
for(int i=;i<m;i++){
scanf("%d%d",&q[i].x,&q[i].y);
}
int sum=;
for(int i=;i<=n;i++){
for(int j=;j<m;j++){
if(mult(p[*i-],q[j],p[*i])>&&!used[j]){
cnt[i-]++;
used[j]=true;
}
}
sum+=cnt[i-];
}
cnt[n] = m-sum;
for(int i=;i<=n;i++){
printf("%d: %d\n",i,cnt[i]);
}
printf("\n");
}
return ;
}
poj 2318(叉积判断点在线段的哪一侧)的更多相关文章
- poj 2398(叉积判断点在线段的哪一侧)
Toy Storage Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 5016 Accepted: 2978 Descr ...
- POJ 2318 TOYS 利用叉积判断点在线段的那一侧
题意:给定n(<=5000)条线段,把一个矩阵分成了n+1分了,有m个玩具,放在为位置是(x,y).现在要问第几个位置上有多少个玩具. 思路:叉积,线段p1p2,记玩具为p0,那么如果(p1p2 ...
- POJ 2318 叉积判断点与直线位置
TOYS Description Calculate the number of toys that land in each bin of a partitioned toy box. Mom ...
- poj 2318 叉积+二分
TOYS Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 13262 Accepted: 6412 Description ...
- POJ 2318 (叉积) TOYS
题意: 有一个长方形,里面从左到右有n条线段,将矩形分成n+1个格子,编号从左到右为0~n. 端点分别在矩形的上下两条边上,这n条线段互不相交. 现在已知m个点,统计每个格子中点的个数. 分析: 用叉 ...
- POJ 3304 Segments (判断直线与线段相交)
题目链接:POJ 3304 Problem Description Given n segments in the two dimensional space, write a program, wh ...
- POJ 3304 Segments 判断直线和线段相交
POJ 3304 Segments 题意:给定n(n<=100)条线段,问你是否存在这样的一条直线,使得所有线段投影下去后,至少都有一个交点. 思路:对于投影在所求直线上面的相交阴影,我们可以 ...
- poj3304(叉积判断直线和线段相交)
题目链接:https://vjudge.net/problem/POJ-3304 题意:求是否能找到一条直线,使得n条线段在该直线的投影有公共点. 思路: 如果存在这样的直线,那么在公共投影点作直线的 ...
- [poj] 2318 TOYS || 判断点在多边形内
原题 给出一个矩形玩具箱和其中隔板的位置,求每个玩具在第几个隔间内(保证没有在线上的玩具) 将玩具按x轴排序,记录当前隔板的编号,每次判断是否需要右移(左移)隔板(因为是有序的,所以移动次数左右不厚超 ...
随机推荐
- 将Excel表中的数据导入MySQL数据库
原文地址: http://fanjiajia.cn/2018/09/26/%E5%B0%86Excel%E8%A1%A8%E4%B8%AD%E7%9A%84%E6%95%B0%E6%8D%AE%E5% ...
- 解决hadoop no dataNode to stop问题
错误原因: datanode的clusterID 和 namenode的 clusterID 不匹配. 解决办法: 1. 打开 hadoop/tmp/dfs/namenode/name/dir 配置对 ...
- 正则awk和查看文件行数
[root@WebServer aa]# cat oldboy.txt I am oldboy myqq is 49000448[root@WebServer aa]# cat oldboy.txt ...
- javaScript this 之谜
作为接触js没多久的人对变量作用域和this所指表示非常迷惑,专门花了一个下午google了一下,感觉以前百度到的结果都是什么鬼... 下面是我对this的认识,学疏才浅请拍砖 每一个方法都有自己的上 ...
- MySQL密码忘了怎么办
之前在ubuntu 12.04里安装了xampp,设置了mysql数据库root密码,今天需要增加个数据库,发现忘记之前设置的密码是什么了.经过一番摸爬滚打,终于搞明白了,注意以下的操作都是以linu ...
- 【bzoj1086】[SCOI2005]王室联邦 树分块
题目描述 将一棵n个点的树分为若干“块”,每个块满足:大小在B到3B之间,并且这个“块”添加某个点后连通.求方案. 输入 第一行包含两个数N,B(1<=N<=1000, 1 <= B ...
- 制作Windows10政府版的小白教程
制作Windows10政府版的小白教程 https://03k.org/make10entg.html 首先,宿主系统要比操作的系统新,因为低版本dism操作不了: 当然也可以单独下载ADK,提取最新 ...
- [洛谷P4568][JLOI2011]飞行路线
题目大意:最短路,可以有$k$条边无费用 题解:分层图最短路,建成$k$层,层与层之间的边费用为$0$ 卡点:空间计算出错,建边写错 C++ Code: #include <cstdio> ...
- 12.25模拟赛T3
可以发现,答案O(根号)(因为链上答案最大,n/2,n/3...根号种) 每次求答案要二分 优秀的做法是: 对于小于根号n的暴力nlogn找,可能二分到同一个mid,记忆化一下最小的tot值 对于大于 ...
- BZOJ1875: [SDOI2009]HH去散步 图上边矩乘
这道题十分的坑…… 我作为一只连矩乘都不太会的渣渣看到这道题就只能神搜了….. 首先说一下普通的矩乘求方案,就是高出邻接矩阵然后一顿快速幂….. 矩乘一般就是一些秘制递推….. 再说一下这道题,我们可 ...