1.线性规划

求线性规划问题的最优解有两种方法,一种方法是使用linprog命令,另一种是使用optimtool工具箱,下面分别介绍这两种方法.

①linprog命令

一般情况下,Linprog命令的参数形式为[x,fval] = linprog(f,A,b,Aeq,beq,lb,ub,x0),下面分别介绍各参数的含义.

[x,fval]返回值中x为最优解,fval为最优值.

f表示目标函数中各个变量前面的系数向量,如果是求最小值问题,那么f就是各个变量的系数,如果是求最大值问题,那么f就是各个变量的系数的相反数.

A和b    表示不等式约束A*x <=b中的矩阵A和向量b.

Aeq和beq    表示等式约束Aeq*x =beq中的矩阵Aeq和向量beq.

lb和ub    分别表示自变量的上下界组成的向量,如果没有上下界,该选项用[]表示,如果只有部分变量有上下界,其余的变量没有,那么可以把没有上下界的变量的上下界设为-inf或者inf使lb或者ub的长度符合要求.

x0    表示变量的初始值,可以缺省.

例,求如下的线性规划问题

由目标函数可知f=[-5;-4;-6];

由约束条件可知矩阵A = [1 -11;3 2 4;3 2 0];右端向量为b = [20;42;30];

由自变量都大于零可知lb =[0;0;0];

所以求该线性规划问题最优解的代码如下

f = [-5;-4;-6];

A = [1 -1 1;3 24;3 2 0];

b = [20;42;30];

lb = [0;0;0];

[x,fval] =linprog(f,A,b,[],[],lb)

其中Aeq和beq都为空,因为没有等式约束条件,只有不等式约束条件.

②optimtool工具箱

在Command窗口输入optimtool,即可弹出optimtool工具箱,如下

工具箱可以大致分为5个部分.第5部分为说明文档,第4部分为优化选项,第3部分为最优解和最优值的显示区域,第2部分为约束条件输入区,第1部分可以填入目标函数值,初始值等.

利用工具箱求解①的问题,填入相应的数据,然后点击【start】按钮,得到结果如下

可以看到,最优解与linprog命令的方式求得的结果是相同的,但最优值不是-78,因为这是迭代的结果,只有在迭代次数区域无穷的时候,才能得到准确值-78.

再举一例,利用MATLAB求解下面这个线性规划问题

这是求最大值问题,要先将问题化为求解最小值的问题,再进行求解.

利用linprog命令求解上述问题的代码如下

f = [-2;-3;5];

A = [-2 5 -1];b= [-10];

Aeq = [1 11];beq = [7];

lb = [0;0;0];

[x,feval] = linprog(f,A,b,Aeq,beq,lb)

利用optimtool工具箱来求解过程如下图

可以验证,两种求解方法的结果是相同的.最后取最优值为图中显示的最优值的相反数.

——————————————————————分割线——————————————————————

2.非线性规划

也有两种求解的方法,一种是fmincon命令,另一种是optimtool工具箱.

①fmincon命令

fmincon命令的一般参数形式为fmincon(‘fun’,x0,A,b,Aeq,beq,lb,ub,’nonlinearcondition’),其中各个参数含义如下

fun    目标函数(以求最小值为目标函数)

x0     最优解迭代的初始值

A,b    线性约束不等式A*x<= b

Aeq,beq    线性约束等式Aeq*x =beq

lb,ub   自变量的上下界

nonlinearcondition   非线性约束函数,它有两个返回值,其中一个为非线性不等式约

束,另一个是非线性等式约束(具体举例说明该项参数的设置)

在具体编写代码过程中,可以将线性约束也写在非线性约束函数nonlinearcondition中,简化代码.

例1,求下面这个非线性规划问题的最优值

首先,编写目标函数的M函数文件,并保存为fun.m代码如下

function f =fun(x)

f = x(1)^2 + x(2)^2 + 8;

end

其次,编写线性和非线性约束的等式或不等式,编写M函数文件,并保存为nonlinearcondition.m,代码如下

function [f,ceq] = nonlinearcondition(x)

f = - x(1)^2 + x(2);

ceq = - x(1) - x(2)^2 + 2;             %非线性等式约束

end

最后,在Command窗口输入如下代码

[x,fval] =fmincon('fun',[0;0],[],[],[],[],[0;0],[],'nonlinearcondition')

即可得到最优值和最优解为x = [1;1],fval = 10.

例2,求下面这个非线性规划问题的最优值

首先,编写目标函数的M函数文件,由于求得是最大值,所以先化为求最小值问题,再原目标函数前面添加负号即可,M函数文件如下,保存为fun.m.

function f =fun(x)

f = -(sqrt(x(1)) + sqrt(x(2)) + sqrt(x(3)) +sqrt(x(4)));

end

然后,编写线性和非线性约束不等式已经非线性约束等式的M函数文件,保存为nonlinearcondition.m,代码如下

function [f,ceq]= nonlinearcondition(x)

%非线性和线性不等式有4个

f(1) =x(1) - 400;

f(2) =1.1*x(1) + x(2) - 440;

f(3) =1.21*x(1) + 1.1*x(2) + x(3) - 484;

f(4) =1.331*x(1) + 1.21*x(2) + 1.1*x(3) + x(4) - 532.4;

ceq = 0;%由于没有非线性约束等式,所以这一项写 0

end

最后,在Command窗口输入如下代码

[x,fval] =fmincon('fun',[0;0;0;0],[],[],[],[],[0;0;0;0],[],'nonlinearcondition')

即可得到最优解和最优值,最优值分别为

x =

86.1883

104.2879

126.1883

152.6879

fval = -43.0860

目标函数最优值为z = -fval=43.0860.

由于线性问题也可以看做是非线性问题的特殊情况,所以可用求解非线性问题的方法求解线性规划问题.

例3,利用fmincon命令求解1.①中的线性规划问题

首先,编写目标函数的M函数文件,M函数文件如下,保存为fun.m.

function f =fun(x)

f = -5*x(1) - 4*x(2) - 6*x(3);

end

然后,编写线性和非线性约束不等式已经非线性约束等式的M函数文件,保存为nonlinearcondition.m,代码如下

function [f,ceq]= nonlinearcondition(x)

%由于有3个线性约束,所以f返回一个三维向量

f(1) =x(1) - x(2) + x(3) - 20;

f(2) =3*x(1) + 2*x(2) + 4*x(3) - 42;

f(3) =3*x(1) + 2*x(2) - 30;

ceq = 0;%没有非线性等式

end

最后,在Command窗口输入如下代码

[x,fval] =fmincon('fun',[0;0;0],[],[],[],[],[0;0;0],[],'nonlinearcondition')

得到的结果与1.线性规划问题的1.①中所用的线性方法所得结果相同.

②optimtool工具箱

同样,非线性规划也可以利用optimtool工具箱,因为其中有一项是填写非线性约束条件的,如下

利用工具箱求解在2.①中的一个问题

首先,编写目标函数的M函数文件,由于求得是最大值,所以先化为求最小值问题,再原目标函数前面添加负号即可,M函数文件如下,保存为fun.m.

function f =fun(x)

f = -(sqrt(x(1)) + sqrt(x(2)) + sqrt(x(3)) +sqrt(x(4)));

end

然后,编写线性和非线性约束不等式已经非线性约束等式的M函数文件,保存为nonlinearcondition.m,代码如下

function [f,ceq]= nonlinearcondition(x)

%非线性和线性不等式有4个

f(1) =x(1) - 400;

f(2) =1.1*x(1) + x(2) - 440;

f(3) =1.21*x(1) + 1.1*x(2) + x(3) - 484;

f(4) =1.331*x(1) + 1.21*x(2) + 1.1*x(3) + x(4) - 532.4;

ceq = 0;%由于没有非线性约束等式,所以这一项写 0

end

在optimtool工具箱中输入相应参数,如下,即可得到相应结果

所得结果与利用fmincon命令所得结果相同.

小结

规划问题中还有特殊的一些问题,例如特殊的线性规划问题——0-1规划,特殊的非线性规问题——二次规划问题,而线性规划问题又是特殊的非线性规划问题,所以这几种规划问题都可以用【非线性规划问题】求解.

参考文献

[1] 卓金武, 魏永生, 秦健, 李必文. MATLAB在数学建模中的应用[M]. 北京: 北京航空航天大学 2011: 18-24
.

MATLAB规划问题——线性规划和非线性规划的更多相关文章

  1. Matlab随笔之线性规划

    原文:Matlab随笔之线性规划   LP(Linear programming,线性规划)是一种优化方法,在优化问题中目标函数和约束函数均为向量变量的线性函数,LP问题可描述为:min xs.t. ...

  2. matlab中fmincon函数求解非线性规划问题

    Matlab求解非线性规划,fmincon函数的用法总结 1.简介 在matlab中,fmincon函数可以求解带约束的非线性多变量函数(Constrained nonlinear multivari ...

  3. matlab学习——01线性规划

    01线性规划 format compact; % min fx % Ax<=b % Aeq*x=beq % lb<=x<=ub % % max z=2x1+3x2-5x3 % x1+ ...

  4. leetcode-Maximum Subarray

    https://leetcode.com/problems/maximum-subarray/ Find the contiguous subarray within an array (contai ...

  5. yalmip + lpsolve + matlab 求解混合整数线性规划问题(MIP/MILP)

    最近建立了一个网络流模型,是一个混合整数线性规划问题(模型中既有连续变量,又有整型变量).当要求解此模型的时候,发现matlab优化工具箱竟没有自带的可以求解这类问题的算法(只有bintprog求解器 ...

  6. 数模常用算法系列Matlab实现-----线性规划

    线性规划的 Matlab 标准形式 线性规划的目标函数可以是求最大值,也可以是求最小值,约束条件的不等号可以是小于号也可以是大于号.为了避免这种形式多样性带来的不便,Matlab 中规定线性 规划的标 ...

  7. matlab绘图--线性规划图解法示意

    matlab绘图--线性规划图解法示意 图解法 matlab绘图 区域填充 线性规划问题: matlab绘图 L1=[4,0;4,4];  plot(L1(:,1),L1(:,2));hold on  ...

  8. matlab——线性规划

    @ 目录 前言 一.基本概念 二.matlab实现 1.常用函数 2.常见变形 参考书目 前言 线性规划是数学规划中的一个重要分支,常用于解决如何利用现有资源来安排生产,以取得最大经济效益的问题.本文 ...

  9. Python小白的数学建模课-12.非线性规划

    非线性规划是指目标函数或约束条件中包含非线性函数的规划问题,实际就是非线性最优化问题. 从线性规划到非线性规划,不仅是数学方法的差异,更是解决问题的思想方法的转变. 非线性规划问题没有统一的通用方法, ...

随机推荐

  1. Nginx+tomcat+redis集群共享session实现负载均衡

    1.nginx是一款轻量级兼备高性能的Http和反向代理服务器.所谓反向代理就是指用户发起访问请求,由代理服务器接受,然后将请求转发给正式服务器,并且将正式服务器处理完的数据返回给客户单,此时代理服务 ...

  2. 页面加载时给的子元素的第一个元素加class

    HTML代码: <div id="xiao"> <ul> <li></li> </ul> </div> js ...

  3. elmentUI组件怎么绑定原生事件

    el-input为例: <el-input id="user-input" type="textarea" placeholder="请换行输入 ...

  4. Java IO 流 体系结构图

  5. [USACO07DEC]美食的食草动物Gourmet Grazers

    ---题面--- 题解: 首先观察题面,直觉上对于一头奶牛,肯定要给它配pi和qi符合条件的草中两者尽量低的草,以节省下好草给高要求的牛. 实际上这是对的,但观察到两者尽量低这个条件并不明确,无法用于 ...

  6. [codechef MEXDIV]Mex division

    题目链接:https://vjudge.net/contest/171650#problem/I 直接用set+dp水过去了... /* 设dp[i]表示前i个做划分满足条件的方案数 有一个显然的转移 ...

  7. bzoj 1201[HNOI2005]数三角形 1202 [HNOI2005]狡猾的商人 暴力 权值并查集

    [HNOI2005]数三角形 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 349  Solved: 234[Submit][Status][Disc ...

  8. TCP之close_wait

    TCP之close_wait 浏览:3697次  出处信息 /* * @author: ahuaxuan * @date: 2010-4-30 */ 查看各状态连接数: netstat -n | aw ...

  9. im4java学习----查看文档和test用例

    im4java下载地址:http://sourceforge.net/projects/im4java/files/(谷歌搜索出来的第一个官方地址打不开) 我们需要下载bin和src 这2个压缩包. ...

  10. Spring任务调度<task:scheduled-tasks>【含cron参数详解】 (转载)

    Spring内部有一个task是Spring自带的一个设定时间自动任务调度 task使用的时候很方便,但是他能做的东西不如quartz那么的多! 可以使用注解和配置两种方式,配置的方式如下 引入Spr ...